1 /++
2 	This is a port of the C code from https://www.nayuki.io/page/qr-code-generator-library
3 
4 	History:
5 		Originally written in C by Project Nayuki.
6 
7 		Ported to D by me on July 26, 2021
8 +/
9 /*
10  * QR Code generator library (C)
11  *
12  * Copyright (c) Project Nayuki. (MIT License)
13  * https://www.nayuki.io/page/qr-code-generator-library
14  *
15  * Permission is hereby granted, free of charge, to any person obtaining a copy of
16  * this software and associated documentation files (the "Software"), to deal in
17  * the Software without restriction, including without limitation the rights to
18  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
19  * the Software, and to permit persons to whom the Software is furnished to do so,
20  * subject to the following conditions:
21  * - The above copyright notice and this permission notice shall be included in
22  *   all copies or substantial portions of the Software.
23  * - The Software is provided "as is", without warranty of any kind, express or
24  *   implied, including but not limited to the warranties of merchantability,
25  *   fitness for a particular purpose and noninfringement. In no event shall the
26  *   authors or copyright holders be liable for any claim, damages or other
27  *   liability, whether in an action of contract, tort or otherwise, arising from,
28  *   out of or in connection with the Software or the use or other dealings in the
29  *   Software.
30  */
31 module arsd.qrcode;
32 
33 ///
34 unittest {
35 	import arsd.qrcode;
36 
37 	void main() {
38 		import arsd.simpledisplay;
39 
40 		QrCode code = QrCode("http://arsdnet.net/");
41 
42 		enum drawsize = 4;
43 		// you have to have some border around it
44 		auto window = new SimpleWindow(code.size * drawsize + 80, code.size * drawsize + 80);
45 
46 		{
47 			auto painter = window.draw;
48 			painter.clear(Color.white);
49 
50 			foreach(y; 0 .. code.size)
51 			foreach(x; 0 .. code.size) {
52 				if(code[x, y]) {
53 					painter.outlineColor = Color.black;
54 					painter.fillColor = Color.black;
55 				} else {
56 					painter.outlineColor = Color.white;
57 					painter.fillColor = Color.white;
58 				}
59 				painter.drawRectangle(Point(x * drawsize + 40, y * drawsize + 40), Size(drawsize, drawsize));
60 			}
61 		}
62 
63 		window.eventLoop(0);
64 	}
65 
66 	main; // exclude from docs
67 }
68 
69 @system:
70 
71 import core.stdc.stddef;
72 import core.stdc.stdint;
73 import core.stdc.string;
74 import core.stdc.config;
75 import core.stdc.stdlib;
76 import core.stdc.math;
77 
78 /*
79  * This library creates QR Code symbols, which is a type of two-dimension barcode.
80  * Invented by Denso Wave and described in the ISO/IEC 18004 standard.
81  * A QR Code structure is an immutable square grid of black and white cells.
82  * The library provides functions to create a QR Code from text or binary data.
83  * The library covers the QR Code Model 2 specification, supporting all versions (sizes)
84  * from 1 to 40, all 4 error correction levels, and 4 character encoding modes.
85  *
86  * Ways to create a QR Code object:
87  * - High level: Take the payload data and call qrcodegen_encodeText() or qrcodegen_encodeBinary().
88  * - Low level: Custom-make the list of segments and call
89  *   qrcodegen_encodeSegments() or qrcodegen_encodeSegmentsAdvanced().
90  * (Note that all ways require supplying the desired error correction level and various byte buffers.)
91  */
92 
93 
94 /*---- Enum and struct types----*/
95 
96 /*
97  * The error correction level in a QR Code symbol.
98  */
99 
100 alias qrcodegen_Ecc = int;
101 
102 enum /*qrcodegen_Ecc*/ {
103 	// Must be declared in ascending order of error protection
104 	// so that an internal qrcodegen function works properly
105 	qrcodegen_Ecc_LOW = 0 ,  // The QR Code can tolerate about  7% erroneous codewords
106 	qrcodegen_Ecc_MEDIUM  ,  // The QR Code can tolerate about 15% erroneous codewords
107 	qrcodegen_Ecc_QUARTILE,  // The QR Code can tolerate about 25% erroneous codewords
108 	qrcodegen_Ecc_HIGH    ,  // The QR Code can tolerate about 30% erroneous codewords
109 }
110 
111 
112 /*
113  * The mask pattern used in a QR Code symbol.
114  */
115 alias qrcodegen_Mask = int;
116 enum /* qrcodegen_Mask */ {
117 	// A special value to tell the QR Code encoder to
118 	// automatically select an appropriate mask pattern
119 	qrcodegen_Mask_AUTO = -1,
120 	// The eight actual mask patterns
121 	qrcodegen_Mask_0 = 0,
122 	qrcodegen_Mask_1,
123 	qrcodegen_Mask_2,
124 	qrcodegen_Mask_3,
125 	qrcodegen_Mask_4,
126 	qrcodegen_Mask_5,
127 	qrcodegen_Mask_6,
128 	qrcodegen_Mask_7,
129 }
130 
131 
132 /*
133  * Describes how a segment's data bits are interpreted.
134  */
135 alias qrcodegen_Mode = int;
136 enum /*qrcodegen_Mode*/ {
137 	qrcodegen_Mode_NUMERIC      = 0x1,
138 	qrcodegen_Mode_ALPHANUMERIC = 0x2,
139 	qrcodegen_Mode_BYTE         = 0x4,
140 	qrcodegen_Mode_KANJI        = 0x8,
141 	qrcodegen_Mode_ECI          = 0x7,
142 }
143 
144 
145 /*
146  * A segment of character/binary/control data in a QR Code symbol.
147  * The mid-level way to create a segment is to take the payload data
148  * and call a factory function such as qrcodegen_makeNumeric().
149  * The low-level way to create a segment is to custom-make the bit buffer
150  * and initialize a qrcodegen_Segment struct with appropriate values.
151  * Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
152  * Any segment longer than this is meaningless for the purpose of generating QR Codes.
153  * Moreover, the maximum allowed bit length is 32767 because
154  * the largest QR Code (version 40) has 31329 modules.
155  */
156 struct qrcodegen_Segment {
157 	// The mode indicator of this segment.
158 	qrcodegen_Mode mode;
159 
160 	// The length of this segment's unencoded data. Measured in characters for
161 	// numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
162 	// Always zero or positive. Not the same as the data's bit length.
163 	int numChars;
164 
165 	// The data bits of this segment, packed in bitwise big endian.
166 	// Can be null if the bit length is zero.
167 	uint8_t *data;
168 
169 	// The number of valid data bits used in the buffer. Requires
170 	// 0 <= bitLength <= 32767, and bitLength <= (capacity of data array) * 8.
171 	// The character count (numChars) must agree with the mode and the bit buffer length.
172 	int bitLength;
173 };
174 
175 
176 
177 /*---- Macro constants and functions ----*/
178 
179 enum qrcodegen_VERSION_MIN =   1;  // The minimum version number supported in the QR Code Model 2 standard
180 enum qrcodegen_VERSION_MAX =  40;  // The maximum version number supported in the QR Code Model 2 standard
181 
182 // Calculates the number of bytes needed to store any QR Code up to and including the given version number,
183 // as a compile-time constant. For example, 'uint8_t buffer[qrcodegen_BUFFER_LEN_FOR_VERSION(25)];'
184 // can store any single QR Code from version 1 to 25 (inclusive). The result fits in an int (or int16).
185 // Requires qrcodegen_VERSION_MIN <= n <= qrcodegen_VERSION_MAX.
186 auto qrcodegen_BUFFER_LEN_FOR_VERSION(int n) { return ((((n) * 4 + 17) * ((n) * 4 + 17) + 7) / 8 + 1); }
187 
188 // The worst-case number of bytes needed to store one QR Code, up to and including
189 // version 40. This value equals 3918, which is just under 4 kilobytes.
190 // Use this more convenient value to avoid calculating tighter memory bounds for buffers.
191 auto qrcodegen_BUFFER_LEN_MAX() { return qrcodegen_BUFFER_LEN_FOR_VERSION(qrcodegen_VERSION_MAX); }
192 
193 
194 
195 /*---- Functions (high level) to generate QR Codes ----*/
196 
197 /*
198  * Encodes the given text string to a QR Code, returning true if encoding succeeded.
199  * If the data is too long to fit in any version in the given range
200  * at the given ECC level, then false is returned.
201  * - The input text must be encoded in UTF-8 and contain no NULs.
202  * - The variables ecl and mask must correspond to enum constant values.
203  * - Requires 1 <= minVersion <= maxVersion <= 40.
204  * - The arrays tempBuffer and qrcode must each have a length
205  *   of at least qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion).
206  * - After the function returns, tempBuffer contains no useful data.
207  * - If successful, the resulting QR Code may use numeric,
208  *   alphanumeric, or byte mode to encode the text.
209  * - In the most optimistic case, a QR Code at version 40 with low ECC
210  *   can hold any UTF-8 string up to 2953 bytes, or any alphanumeric string
211  *   up to 4296 characters, or any digit string up to 7089 characters.
212  *   These numbers represent the hard upper limit of the QR Code standard.
213  * - Please consult the QR Code specification for information on
214  *   data capacities per version, ECC level, and text encoding mode.
215  */
216 bool qrcodegen_encodeText(const char *text, uint8_t* tempBuffer, uint8_t* qrcode,
217 	qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl);
218 
219 
220 /*
221  * Encodes the given binary data to a QR Code, returning true if encoding succeeded.
222  * If the data is too long to fit in any version in the given range
223  * at the given ECC level, then false is returned.
224  * - The input array range dataAndTemp[0 : dataLen] should normally be
225  *   valid UTF-8 text, but is not required by the QR Code standard.
226  * - The variables ecl and mask must correspond to enum constant values.
227  * - Requires 1 <= minVersion <= maxVersion <= 40.
228  * - The arrays dataAndTemp and qrcode must each have a length
229  *   of at least qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion).
230  * - After the function returns, the contents of dataAndTemp may have changed,
231  *   and does not represent useful data anymore.
232  * - If successful, the resulting QR Code will use byte mode to encode the data.
233  * - In the most optimistic case, a QR Code at version 40 with low ECC can hold any byte
234  *   sequence up to length 2953. This is the hard upper limit of the QR Code standard.
235  * - Please consult the QR Code specification for information on
236  *   data capacities per version, ECC level, and text encoding mode.
237  */
238 bool qrcodegen_encodeBinary(uint8_t* dataAndTemp, size_t dataLen, uint8_t* qrcode,
239 	qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl);
240 
241 
242 
243 /*---- Functions to extract raw data from QR Codes ----*/
244 
245 
246 /*
247  * QR Code generator library (C)
248  *
249  * Copyright (c) Project Nayuki. (MIT License)
250  * https://www.nayuki.io/page/qr-code-generator-library
251  *
252  * Permission is hereby granted, free of charge, to any person obtaining a copy of
253  * this software and associated documentation files (the "Software"), to deal in
254  * the Software without restriction, including without limitation the rights to
255  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
256  * the Software, and to permit persons to whom the Software is furnished to do so,
257  * subject to the following conditions:
258  * - The above copyright notice and this permission notice shall be included in
259  *   all copies or substantial portions of the Software.
260  * - The Software is provided "as is", without warranty of any kind, express or
261  *   implied, including but not limited to the warranties of merchantability,
262  *   fitness for a particular purpose and noninfringement. In no event shall the
263  *   authors or copyright holders be liable for any claim, damages or other
264  *   liability, whether in an action of contract, tort or otherwise, arising from,
265  *   out of or in connection with the Software or the use or other dealings in the
266  *   Software.
267  */
268 
269 /*---- Forward declarations for private functions ----*/
270 
271 // Regarding all public and private functions defined in this source file:
272 // - They require all pointer/array arguments to be not null unless the array length is zero.
273 // - They only read input scalar/array arguments, write to output pointer/array
274 //   arguments, and return scalar values; they are "pure" functions.
275 // - They don't read mutable global variables or write to any global variables.
276 // - They don't perform I/O, read the clock, print to console, etc.
277 // - They allocate a small and constant amount of stack memory.
278 // - They don't allocate or free any memory on the heap.
279 // - They don't recurse or mutually recurse. All the code
280 //   could be inlined into the top-level public functions.
281 // - They run in at most quadratic time with respect to input arguments.
282 //   Most functions run in linear time, and some in constant time.
283 //   There are no unbounded loops or non-obvious termination conditions.
284 // - They are completely thread-safe if the caller does not give the
285 //   same writable buffer to concurrent calls to these functions.
286 
287 /*---- Private tables of constants ----*/
288 
289 // The set of all legal characters in alphanumeric mode, where each character
290 // value maps to the index in the string. For checking text and encoding segments.
291 static const char *ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";
292 
293 // For generating error correction codes.
294 private const int8_t[41][4] ECC_CODEWORDS_PER_BLOCK = [
295 	// Version: (note that index 0 is for padding, and is set to an illegal value)
296 	//0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
297 	[-1,  7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],  // Low
298 	[-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28],  // Medium
299 	[-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],  // Quartile
300 	[-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],  // High
301 ];
302 
303 enum qrcodegen_REED_SOLOMON_DEGREE_MAX = 30;  // Based on the table above
304 
305 // For generating error correction codes.
306 private const int8_t[41][4] NUM_ERROR_CORRECTION_BLOCKS = [
307 	// Version: (note that index 0 is for padding, and is set to an illegal value)
308 	//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
309 	[-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4,  4,  4,  4,  4,  6,  6,  6,  6,  7,  8,  8,  9,  9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25],  // Low
310 	[-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5,  5,  8,  9,  9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49],  // Medium
311 	[-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8,  8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68],  // Quartile
312 	[-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81],  // High
313 ];
314 
315 // For automatic mask pattern selection.
316 static const int PENALTY_N1 =  3;
317 static const int PENALTY_N2 =  3;
318 static const int PENALTY_N3 = 40;
319 static const int PENALTY_N4 = 10;
320 
321 
322 
323 /*---- High-level QR Code encoding functions ----*/
324 
325 // Public function - see documentation comment in header file.
326 bool qrcodegen_encodeText(const char *text, uint8_t* tempBuffer, uint8_t* qrcode,
327 		qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl) {
328 
329 	size_t textLen = strlen(text);
330 	if (textLen == 0)
331 		return qrcodegen_encodeSegmentsAdvanced(null, 0, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode);
332 	size_t bufLen = qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion);
333 
334 	qrcodegen_Segment seg;
335 	if (qrcodegen_isNumeric(text)) {
336 		if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_NUMERIC, textLen) > bufLen)
337 			goto fail;
338 		seg = qrcodegen_makeNumeric(text, tempBuffer);
339 	} else if (qrcodegen_isAlphanumeric(text)) {
340 		if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_ALPHANUMERIC, textLen) > bufLen)
341 			goto fail;
342 		seg = qrcodegen_makeAlphanumeric(text, tempBuffer);
343 	} else {
344 		if (textLen > bufLen)
345 			goto fail;
346 		for (size_t i = 0; i < textLen; i++)
347 			tempBuffer[i] = cast(uint8_t)text[i];
348 		seg.mode = qrcodegen_Mode_BYTE;
349 		seg.bitLength = calcSegmentBitLength(seg.mode, textLen);
350 		if (seg.bitLength == -1)
351 			goto fail;
352 		seg.numChars = cast(int)textLen;
353 		seg.data = tempBuffer;
354 	}
355 	return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode);
356 
357 fail:
358 	qrcode[0] = 0;  // Set size to invalid value for safety
359 	return false;
360 }
361 
362 
363 // Public function - see documentation comment in header file.
364 bool qrcodegen_encodeBinary(uint8_t* dataAndTemp, size_t dataLen, uint8_t* qrcode,
365 		qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl) {
366 
367 	qrcodegen_Segment seg;
368 	seg.mode = qrcodegen_Mode_BYTE;
369 	seg.bitLength = calcSegmentBitLength(seg.mode, dataLen);
370 	if (seg.bitLength == -1) {
371 		qrcode[0] = 0;  // Set size to invalid value for safety
372 		return false;
373 	}
374 	seg.numChars = cast(int)dataLen;
375 	seg.data = dataAndTemp;
376 	return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, dataAndTemp, qrcode);
377 }
378 
379 
380 // Appends the given number of low-order bits of the given value to the given byte-based
381 // bit buffer, increasing the bit length. Requires 0 <= numBits <= 16 and val < 2^numBits.
382 private void appendBitsToBuffer(uint val, int numBits, uint8_t* buffer, int *bitLen) {
383 	assert(0 <= numBits && numBits <= 16 && cast(c_ulong)val >> numBits == 0);
384 	for (int i = numBits - 1; i >= 0; i--, (*bitLen)++)
385 		buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7));
386 }
387 
388 
389 
390 /*---- Low-level QR Code encoding functions ----*/
391 
392 // Public function - see documentation comment in header file.
393 
394 /*
395  * Renders a QR Code representing the given segments at the given error correction level.
396  * The smallest possible QR Code version is automatically chosen for the output. Returns true if
397  * QR Code creation succeeded, or false if the data is too long to fit in any version. The ECC level
398  * of the result may be higher than the ecl argument if it can be done without increasing the version.
399  * This function allows the user to create a custom sequence of segments that switches
400  * between modes (such as alphanumeric and byte) to encode text in less space.
401  * This is a low-level API; the high-level API is qrcodegen_encodeText() and qrcodegen_encodeBinary().
402  * To save memory, the segments' data buffers can alias/overlap tempBuffer, and will
403  * result in them being clobbered, but the QR Code output will still be correct.
404  * But the qrcode array must not overlap tempBuffer or any segment's data buffer.
405  */
406 
407 bool qrcodegen_encodeSegments(const qrcodegen_Segment* segs, size_t len,
408 		qrcodegen_Ecc ecl, uint8_t* tempBuffer, uint8_t* qrcode) {
409 	return qrcodegen_encodeSegmentsAdvanced(segs, len, ecl,
410 		qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, qrcodegen_Mask_AUTO, true, tempBuffer, qrcode);
411 }
412 
413 
414 // Public function - see documentation comment in header file.
415 
416 
417 /*
418  * Renders a QR Code representing the given segments with the given encoding parameters.
419  * Returns true if QR Code creation succeeded, or false if the data is too long to fit in the range of versions.
420  * The smallest possible QR Code version within the given range is automatically
421  * chosen for the output. Iff boostEcl is true, then the ECC level of the result
422  * may be higher than the ecl argument if it can be done without increasing the
423  * version. The mask is either between qrcodegen_Mask_0 to 7 to force that mask, or
424  * qrcodegen_Mask_AUTO to automatically choose an appropriate mask (which may be slow).
425  * This function allows the user to create a custom sequence of segments that switches
426  * between modes (such as alphanumeric and byte) to encode text in less space.
427  * This is a low-level API; the high-level API is qrcodegen_encodeText() and qrcodegen_encodeBinary().
428  * To save memory, the segments' data buffers can alias/overlap tempBuffer, and will
429  * result in them being clobbered, but the QR Code output will still be correct.
430  * But the qrcode array must not overlap tempBuffer or any segment's data buffer.
431  */
432 
433 bool qrcodegen_encodeSegmentsAdvanced(const qrcodegen_Segment* segs, size_t len, qrcodegen_Ecc ecl,
434 		int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl, uint8_t* tempBuffer, uint8_t* qrcode) {
435 	assert(segs != null || len == 0);
436 	assert(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX);
437 	assert(0 <= cast(int)ecl && cast(int)ecl <= 3 && -1 <= cast(int)mask && cast(int)mask <= 7);
438 
439 	// Find the minimal version_ number to use
440 	int version_, dataUsedBits;
441 	for (version_ = minVersion; ; version_++) {
442 		int dataCapacityBits = getNumDataCodewords(version_, ecl) * 8;  // Number of data bits available
443 		dataUsedBits = getTotalBits(segs, len, version_);
444 		if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits)
445 			break;  // This version_ number is found to be suitable
446 		if (version_ >= maxVersion) {  // All version_s in the range could not fit the given data
447 			qrcode[0] = 0;  // Set size to invalid value for safety
448 			return false;
449 		}
450 	}
451 	assert(dataUsedBits != -1);
452 
453 	// Increase the error correction level while the data still fits in the current version_ number
454 	for (int i = cast(int)qrcodegen_Ecc_MEDIUM; i <= cast(int)qrcodegen_Ecc_HIGH; i++) {  // From low to high
455 		if (boostEcl && dataUsedBits <= getNumDataCodewords(version_, cast(qrcodegen_Ecc)i) * 8)
456 			ecl = cast(qrcodegen_Ecc)i;
457 	}
458 
459 	// Concatenate all segments to create the data bit string
460 	memset(qrcode, 0, cast(size_t)qrcodegen_BUFFER_LEN_FOR_VERSION(version_) * (qrcode[0]).sizeof);
461 	int bitLen = 0;
462 	for (size_t i = 0; i < len; i++) {
463 		const qrcodegen_Segment *seg = &segs[i];
464 		appendBitsToBuffer(cast(uint)seg.mode, 4, qrcode, &bitLen);
465 		appendBitsToBuffer(cast(uint)seg.numChars, numCharCountBits(seg.mode, version_), qrcode, &bitLen);
466 		for (int j = 0; j < seg.bitLength; j++) {
467 			int bit = (seg.data[j >> 3] >> (7 - (j & 7))) & 1;
468 			appendBitsToBuffer(cast(uint)bit, 1, qrcode, &bitLen);
469 		}
470 	}
471 	assert(bitLen == dataUsedBits);
472 
473 	// Add terminator and pad up to a byte if applicable
474 	int dataCapacityBits = getNumDataCodewords(version_, ecl) * 8;
475 	assert(bitLen <= dataCapacityBits);
476 	int terminatorBits = dataCapacityBits - bitLen;
477 	if (terminatorBits > 4)
478 		terminatorBits = 4;
479 	appendBitsToBuffer(0, terminatorBits, qrcode, &bitLen);
480 	appendBitsToBuffer(0, (8 - bitLen % 8) % 8, qrcode, &bitLen);
481 	assert(bitLen % 8 == 0);
482 
483 	// Pad with alternating bytes until data capacity is reached
484 	for (uint8_t padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11)
485 		appendBitsToBuffer(padByte, 8, qrcode, &bitLen);
486 
487 	// Draw function and data codeword modules
488 	addEccAndInterleave(qrcode, version_, ecl, tempBuffer);
489 	initializeFunctionModules(version_, qrcode);
490 	drawCodewords(tempBuffer, getNumRawDataModules(version_) / 8, qrcode);
491 	drawWhiteFunctionModules(qrcode, version_);
492 	initializeFunctionModules(version_, tempBuffer);
493 
494 	// Handle masking
495 	if (mask == qrcodegen_Mask_AUTO) {  // Automatically choose best mask
496 		long minPenalty = long.max;
497 		for (int i = 0; i < 8; i++) {
498 			qrcodegen_Mask msk = cast(qrcodegen_Mask)i;
499 			applyMask(tempBuffer, qrcode, msk);
500 			drawFormatBits(ecl, msk, qrcode);
501 			long penalty = getPenaltyScore(qrcode);
502 			if (penalty < minPenalty) {
503 				mask = msk;
504 				minPenalty = penalty;
505 			}
506 			applyMask(tempBuffer, qrcode, msk);  // Undoes the mask due to XOR
507 		}
508 	}
509 	assert(0 <= cast(int)mask && cast(int)mask <= 7);
510 	applyMask(tempBuffer, qrcode, mask);
511 	drawFormatBits(ecl, mask, qrcode);
512 	return true;
513 }
514 
515 
516 
517 /*---- Error correction code generation functions ----*/
518 
519 // Appends error correction bytes to each block of the given data array, then interleaves
520 // bytes from the blocks and stores them in the result array. data[0 : dataLen] contains
521 // the input data. data[dataLen : rawCodewords] is used as a temporary work area and will
522 // be clobbered by this function. The final answer is stored in result[0 : rawCodewords].
523 private void addEccAndInterleave(uint8_t* data, int version_, qrcodegen_Ecc ecl, uint8_t* result) {
524 	// Calculate parameter numbers
525 	assert(0 <= cast(int)ecl && cast(int)ecl < 4 && qrcodegen_VERSION_MIN <= version_ && version_ <= qrcodegen_VERSION_MAX);
526 	int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[cast(int)ecl][version_];
527 	int blockEccLen = ECC_CODEWORDS_PER_BLOCK  [cast(int)ecl][version_];
528 	int rawCodewords = getNumRawDataModules(version_) / 8;
529 	int dataLen = getNumDataCodewords(version_, ecl);
530 	int numShortBlocks = numBlocks - rawCodewords % numBlocks;
531 	int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen;
532 
533 	// Split data into blocks, calculate ECC, and interleave
534 	// (not concatenate) the bytes into a single sequence
535 	uint8_t[qrcodegen_REED_SOLOMON_DEGREE_MAX] rsdiv;
536 	reedSolomonComputeDivisor(blockEccLen, rsdiv.ptr);
537 	const(uint8_t)* dat = data;
538 	for (int i = 0; i < numBlocks; i++) {
539 		int datLen = shortBlockDataLen + (i < numShortBlocks ? 0 : 1);
540 		uint8_t *ecc = &data[dataLen];  // Temporary storage
541 		reedSolomonComputeRemainder(dat, datLen, rsdiv.ptr, blockEccLen, ecc);
542 		for (int j = 0, k = i; j < datLen; j++, k += numBlocks) {  // Copy data
543 			if (j == shortBlockDataLen)
544 				k -= numShortBlocks;
545 			result[k] = dat[j];
546 		}
547 		for (int j = 0, k = dataLen + i; j < blockEccLen; j++, k += numBlocks)  // Copy ECC
548 			result[k] = ecc[j];
549 		dat += datLen;
550 	}
551 }
552 
553 
554 // Returns the number of 8-bit codewords that can be used for storing data (not ECC),
555 // for the given version_ number and error correction level. The result is in the range [9, 2956].
556 private int getNumDataCodewords(int version_, qrcodegen_Ecc ecl) {
557 	int v = version_, e = cast(int)ecl;
558 	assert(0 <= e && e < 4);
559 	return getNumRawDataModules(v) / 8
560 		- ECC_CODEWORDS_PER_BLOCK    [e][v]
561 		* NUM_ERROR_CORRECTION_BLOCKS[e][v];
562 }
563 
564 
565 // Returns the number of data bits that can be stored in a QR Code of the given version_ number, after
566 // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
567 // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
568 private int getNumRawDataModules(int ver) {
569 	assert(qrcodegen_VERSION_MIN <= ver && ver <= qrcodegen_VERSION_MAX);
570 	int result = (16 * ver + 128) * ver + 64;
571 	if (ver >= 2) {
572 		int numAlign = ver / 7 + 2;
573 		result -= (25 * numAlign - 10) * numAlign - 55;
574 		if (ver >= 7)
575 			result -= 36;
576 	}
577 	assert(208 <= result && result <= 29648);
578 	return result;
579 }
580 
581 
582 
583 /*---- Reed-Solomon ECC generator functions ----*/
584 
585 // Computes a Reed-Solomon ECC generator polynomial for the given degree, storing in result[0 : degree].
586 // This could be implemented as a lookup table over all possible parameter values, instead of as an algorithm.
587 private void reedSolomonComputeDivisor(int degree, uint8_t* result) {
588 	assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX);
589 	// Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1.
590 	// For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}.
591 	memset(result, 0, cast(size_t)degree * (result[0]).sizeof);
592 	result[degree - 1] = 1;  // Start off with the monomial x^0
593 
594 	// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
595 	// drop the highest monomial term which is always 1x^degree.
596 	// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
597 	uint8_t root = 1;
598 	for (int i = 0; i < degree; i++) {
599 		// Multiply the current product by (x - r^i)
600 		for (int j = 0; j < degree; j++) {
601 			result[j] = reedSolomonMultiply(result[j], root);
602 			if (j + 1 < degree)
603 				result[j] ^= result[j + 1];
604 		}
605 		root = reedSolomonMultiply(root, 0x02);
606 	}
607 }
608 
609 
610 // Computes the Reed-Solomon error correction codeword for the given data and divisor polynomials.
611 // The remainder when data[0 : dataLen] is divided by divisor[0 : degree] is stored in result[0 : degree].
612 // All polynomials are in big endian, and the generator has an implicit leading 1 term.
613 private void reedSolomonComputeRemainder(const uint8_t* data, int dataLen,
614 		const uint8_t* generator, int degree, uint8_t* result) {
615 	assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX);
616 	memset(result, 0, cast(size_t)degree * (result[0]).sizeof);
617 	for (int i = 0; i < dataLen; i++) {  // Polynomial division
618 		uint8_t factor = data[i] ^ result[0];
619 		memmove(&result[0], &result[1], cast(size_t)(degree - 1) * (result[0]).sizeof);
620 		result[degree - 1] = 0;
621 		for (int j = 0; j < degree; j++)
622 			result[j] ^= reedSolomonMultiply(generator[j], factor);
623 	}
624 }
625 
626 // Returns the product of the two given field elements modulo GF(2^8/0x11D).
627 // All inputs are valid. This could be implemented as a 256*256 lookup table.
628 private uint8_t reedSolomonMultiply(uint8_t x, uint8_t y) {
629 	// Russian peasant multiplication
630 	uint8_t z = 0;
631 	for (int i = 7; i >= 0; i--) {
632 		z = cast(uint8_t)((z << 1) ^ ((z >> 7) * 0x11D));
633 		z ^= ((y >> i) & 1) * x;
634 	}
635 	return z;
636 }
637 
638 
639 
640 /*---- Drawing function modules ----*/
641 
642 // Clears the given QR Code grid with white modules for the given
643 // version_'s size, then marks every function module as black.
644 private void initializeFunctionModules(int version_, uint8_t* qrcode) {
645 	// Initialize QR Code
646 	int qrsize = version_ * 4 + 17;
647 	memset(qrcode, 0, cast(size_t)((qrsize * qrsize + 7) / 8 + 1) * (qrcode[0]).sizeof);
648 	qrcode[0] = cast(uint8_t)qrsize;
649 
650 	// Fill horizontal and vertical timing patterns
651 	fillRectangle(6, 0, 1, qrsize, qrcode);
652 	fillRectangle(0, 6, qrsize, 1, qrcode);
653 
654 	// Fill 3 finder patterns (all corners except bottom right) and format bits
655 	fillRectangle(0, 0, 9, 9, qrcode);
656 	fillRectangle(qrsize - 8, 0, 8, 9, qrcode);
657 	fillRectangle(0, qrsize - 8, 9, 8, qrcode);
658 
659 	// Fill numerous alignment patterns
660 	uint8_t[7] alignPatPos;
661 	int numAlign = getAlignmentPatternPositions(version_, alignPatPos);
662 	for (int i = 0; i < numAlign; i++) {
663 		for (int j = 0; j < numAlign; j++) {
664 			// Don't draw on the three finder corners
665 			if (!((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)))
666 				fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode);
667 		}
668 	}
669 
670 	// Fill version_ blocks
671 	if (version_ >= 7) {
672 		fillRectangle(qrsize - 11, 0, 3, 6, qrcode);
673 		fillRectangle(0, qrsize - 11, 6, 3, qrcode);
674 	}
675 }
676 
677 
678 // Draws white function modules and possibly some black modules onto the given QR Code, without changing
679 // non-function modules. This does not draw the format bits. This requires all function modules to be previously
680 // marked black (namely by initializeFunctionModules()), because this may skip redrawing black function modules.
681 static void drawWhiteFunctionModules(uint8_t* qrcode, int version_) {
682 	// Draw horizontal and vertical timing patterns
683 	int qrsize = qrcodegen_getSize(qrcode);
684 	for (int i = 7; i < qrsize - 7; i += 2) {
685 		setModule(qrcode, 6, i, false);
686 		setModule(qrcode, i, 6, false);
687 	}
688 
689 	// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
690 	for (int dy = -4; dy <= 4; dy++) {
691 		for (int dx = -4; dx <= 4; dx++) {
692 			int dist = abs(dx);
693 			if (abs(dy) > dist)
694 				dist = abs(dy);
695 			if (dist == 2 || dist == 4) {
696 				setModuleBounded(qrcode, 3 + dx, 3 + dy, false);
697 				setModuleBounded(qrcode, qrsize - 4 + dx, 3 + dy, false);
698 				setModuleBounded(qrcode, 3 + dx, qrsize - 4 + dy, false);
699 			}
700 		}
701 	}
702 
703 	// Draw numerous alignment patterns
704 	uint8_t[7] alignPatPos;
705 	int numAlign = getAlignmentPatternPositions(version_, alignPatPos);
706 	for (int i = 0; i < numAlign; i++) {
707 		for (int j = 0; j < numAlign; j++) {
708 			if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0))
709 				continue;  // Don't draw on the three finder corners
710 			for (int dy = -1; dy <= 1; dy++) {
711 				for (int dx = -1; dx <= 1; dx++)
712 					setModule(qrcode, alignPatPos[i] + dx, alignPatPos[j] + dy, dx == 0 && dy == 0);
713 			}
714 		}
715 	}
716 
717 	// Draw version_ blocks
718 	if (version_ >= 7) {
719 		// Calculate error correction code and pack bits
720 		int rem = version_;  // version_ is uint6, in the range [7, 40]
721 		for (int i = 0; i < 12; i++)
722 			rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
723 		c_long bits = cast(c_long)version_ << 12 | rem;  // uint18
724 		assert(bits >> 18 == 0);
725 
726 		// Draw two copies
727 		for (int i = 0; i < 6; i++) {
728 			for (int j = 0; j < 3; j++) {
729 				int k = qrsize - 11 + j;
730 				setModule(qrcode, k, i, (bits & 1) != 0);
731 				setModule(qrcode, i, k, (bits & 1) != 0);
732 				bits >>= 1;
733 			}
734 		}
735 	}
736 }
737 
738 
739 // Draws two copies of the format bits (with its own error correction code) based
740 // on the given mask and error correction level. This always draws all modules of
741 // the format bits, unlike drawWhiteFunctionModules() which might skip black modules.
742 static void drawFormatBits(qrcodegen_Ecc ecl, qrcodegen_Mask mask, uint8_t* qrcode) {
743 	// Calculate error correction code and pack bits
744 	assert(0 <= cast(int)mask && cast(int)mask <= 7);
745 	static const int[] table = [1, 0, 3, 2];
746 	int data = table[cast(int)ecl] << 3 | cast(int)mask;  // errCorrLvl is uint2, mask is uint3
747 	int rem = data;
748 	for (int i = 0; i < 10; i++)
749 		rem = (rem << 1) ^ ((rem >> 9) * 0x537);
750 	int bits = (data << 10 | rem) ^ 0x5412;  // uint15
751 	assert(bits >> 15 == 0);
752 
753 	// Draw first copy
754 	for (int i = 0; i <= 5; i++)
755 		setModule(qrcode, 8, i, getBit(bits, i));
756 	setModule(qrcode, 8, 7, getBit(bits, 6));
757 	setModule(qrcode, 8, 8, getBit(bits, 7));
758 	setModule(qrcode, 7, 8, getBit(bits, 8));
759 	for (int i = 9; i < 15; i++)
760 		setModule(qrcode, 14 - i, 8, getBit(bits, i));
761 
762 	// Draw second copy
763 	int qrsize = qrcodegen_getSize(qrcode);
764 	for (int i = 0; i < 8; i++)
765 		setModule(qrcode, qrsize - 1 - i, 8, getBit(bits, i));
766 	for (int i = 8; i < 15; i++)
767 		setModule(qrcode, 8, qrsize - 15 + i, getBit(bits, i));
768 	setModule(qrcode, 8, qrsize - 8, true);  // Always black
769 }
770 
771 
772 // Calculates and stores an ascending list of positions of alignment patterns
773 // for this version_ number, returning the length of the list (in the range [0,7]).
774 // Each position is in the range [0,177), and are used on both the x and y axes.
775 // This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
776 private int getAlignmentPatternPositions(int version_, ref uint8_t[7] result) {
777 	if (version_ == 1)
778 		return 0;
779 	int numAlign = version_ / 7 + 2;
780 	int step = (version_ == 32) ? 26 :
781 		(version_*4 + numAlign*2 + 1) / (numAlign*2 - 2) * 2;
782 	for (int i = numAlign - 1, pos = version_ * 4 + 10; i >= 1; i--, pos -= step)
783 		result[i] = cast(uint8_t)pos;
784 	result[0] = 6;
785 	return numAlign;
786 }
787 
788 
789 // Sets every pixel in the range [left : left + width] * [top : top + height] to black.
790 static void fillRectangle(int left, int top, int width, int height, uint8_t* qrcode) {
791 	for (int dy = 0; dy < height; dy++) {
792 		for (int dx = 0; dx < width; dx++)
793 			setModule(qrcode, left + dx, top + dy, true);
794 	}
795 }
796 
797 
798 
799 /*---- Drawing data modules and masking ----*/
800 
801 // Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of
802 // the QR Code to be black at function modules and white at codeword modules (including unused remainder bits).
803 static void drawCodewords(const uint8_t* data, int dataLen, uint8_t* qrcode) {
804 	int qrsize = qrcodegen_getSize(qrcode);
805 	int i = 0;  // Bit index into the data
806 	// Do the funny zigzag scan
807 	for (int right = qrsize - 1; right >= 1; right -= 2) {  // Index of right column in each column pair
808 		if (right == 6)
809 			right = 5;
810 		for (int vert = 0; vert < qrsize; vert++) {  // Vertical counter
811 			for (int j = 0; j < 2; j++) {
812 				int x = right - j;  // Actual x coordinate
813 				bool upward = ((right + 1) & 2) == 0;
814 				int y = upward ? qrsize - 1 - vert : vert;  // Actual y coordinate
815 				if (!getModule(qrcode, x, y) && i < dataLen * 8) {
816 					bool black = getBit(data[i >> 3], 7 - (i & 7));
817 					setModule(qrcode, x, y, black);
818 					i++;
819 				}
820 				// If this QR Code has any remainder bits (0 to 7), they were assigned as
821 				// 0/false/white by the constructor and are left unchanged by this method
822 			}
823 		}
824 	}
825 	assert(i == dataLen * 8);
826 }
827 
828 
829 // XORs the codeword modules in this QR Code with the given mask pattern.
830 // The function modules must be marked and the codeword bits must be drawn
831 // before masking. Due to the arithmetic of XOR, calling applyMask() with
832 // the same mask value a second time will undo the mask. A final well-formed
833 // QR Code needs exactly one (not zero, two, etc.) mask applied.
834 static void applyMask(const uint8_t* functionModules, uint8_t* qrcode, qrcodegen_Mask mask) {
835 	assert(0 <= cast(int)mask && cast(int)mask <= 7);  // Disallows qrcodegen_Mask_AUTO
836 	int qrsize = qrcodegen_getSize(qrcode);
837 	for (int y = 0; y < qrsize; y++) {
838 		for (int x = 0; x < qrsize; x++) {
839 			if (getModule(functionModules, x, y))
840 				continue;
841 			bool invert;
842 			switch (cast(int)mask) {
843 				case 0:  invert = (x + y) % 2 == 0;                    break;
844 				case 1:  invert = y % 2 == 0;                          break;
845 				case 2:  invert = x % 3 == 0;                          break;
846 				case 3:  invert = (x + y) % 3 == 0;                    break;
847 				case 4:  invert = (x / 3 + y / 2) % 2 == 0;            break;
848 				case 5:  invert = x * y % 2 + x * y % 3 == 0;          break;
849 				case 6:  invert = (x * y % 2 + x * y % 3) % 2 == 0;    break;
850 				case 7:  invert = ((x + y) % 2 + x * y % 3) % 2 == 0;  break;
851 				default:  assert(false);
852 			}
853 			bool val = getModule(qrcode, x, y);
854 			setModule(qrcode, x, y, val ^ invert);
855 		}
856 	}
857 }
858 
859 
860 // Calculates and returns the penalty score based on state of the given QR Code's current modules.
861 // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
862 static long getPenaltyScore(const uint8_t* qrcode) {
863 	int qrsize = qrcodegen_getSize(qrcode);
864 	long result = 0;
865 
866 	// Adjacent modules in row having same color, and finder-like patterns
867 	for (int y = 0; y < qrsize; y++) {
868 		bool runColor = false;
869 		int runX = 0;
870 		int[7] runHistory = 0;
871 		for (int x = 0; x < qrsize; x++) {
872 			if (getModule(qrcode, x, y) == runColor) {
873 				runX++;
874 				if (runX == 5)
875 					result += PENALTY_N1;
876 				else if (runX > 5)
877 					result++;
878 			} else {
879 				finderPenaltyAddHistory(runX, runHistory, qrsize);
880 				if (!runColor)
881 					result += finderPenaltyCountPatterns(runHistory, qrsize) * PENALTY_N3;
882 				runColor = getModule(qrcode, x, y);
883 				runX = 1;
884 			}
885 		}
886 		result += finderPenaltyTerminateAndCount(runColor, runX, runHistory, qrsize) * PENALTY_N3;
887 	}
888 	// Adjacent modules in column having same color, and finder-like patterns
889 	for (int x = 0; x < qrsize; x++) {
890 		bool runColor = false;
891 		int runY = 0;
892 		int[7] runHistory = 0;
893 		for (int y = 0; y < qrsize; y++) {
894 			if (getModule(qrcode, x, y) == runColor) {
895 				runY++;
896 				if (runY == 5)
897 					result += PENALTY_N1;
898 				else if (runY > 5)
899 					result++;
900 			} else {
901 				finderPenaltyAddHistory(runY, runHistory, qrsize);
902 				if (!runColor)
903 					result += finderPenaltyCountPatterns(runHistory, qrsize) * PENALTY_N3;
904 				runColor = getModule(qrcode, x, y);
905 				runY = 1;
906 			}
907 		}
908 		result += finderPenaltyTerminateAndCount(runColor, runY, runHistory, qrsize) * PENALTY_N3;
909 	}
910 
911 	// 2*2 blocks of modules having same color
912 	for (int y = 0; y < qrsize - 1; y++) {
913 		for (int x = 0; x < qrsize - 1; x++) {
914 			bool  color = getModule(qrcode, x, y);
915 			if (  color == getModule(qrcode, x + 1, y) &&
916 			      color == getModule(qrcode, x, y + 1) &&
917 			      color == getModule(qrcode, x + 1, y + 1))
918 				result += PENALTY_N2;
919 		}
920 	}
921 
922 	// Balance of black and white modules
923 	int black = 0;
924 	for (int y = 0; y < qrsize; y++) {
925 		for (int x = 0; x < qrsize; x++) {
926 			if (getModule(qrcode, x, y))
927 				black++;
928 		}
929 	}
930 	int total = qrsize * qrsize;  // Note that size is odd, so black/total != 1/2
931 	// Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)%
932 	int k = cast(int)((labs(black * 20 - total * 10) + total - 1) / total) - 1;
933 	result += k * PENALTY_N4;
934 	return result;
935 }
936 
937 
938 // Can only be called immediately after a white run is added, and
939 // returns either 0, 1, or 2. A helper function for getPenaltyScore().
940 static int finderPenaltyCountPatterns(const int[7] runHistory, int qrsize) {
941 	int n = runHistory[1];
942 	assert(n <= qrsize * 3);
943 	bool core = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n;
944 	// The maximum QR Code size is 177, hence the black run length n <= 177.
945 	// Arithmetic is promoted to int, so n*4 will not overflow.
946 	return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0)
947 	     + (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0);
948 }
949 
950 
951 // Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore().
952 static int finderPenaltyTerminateAndCount(bool currentRunColor, int currentRunLength, ref int[7] runHistory, int qrsize) {
953 	if (currentRunColor) {  // Terminate black run
954 		finderPenaltyAddHistory(currentRunLength, runHistory, qrsize);
955 		currentRunLength = 0;
956 	}
957 	currentRunLength += qrsize;  // Add white border to final run
958 	finderPenaltyAddHistory(currentRunLength, runHistory, qrsize);
959 	return finderPenaltyCountPatterns(runHistory, qrsize);
960 }
961 
962 
963 // Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore().
964 static void finderPenaltyAddHistory(int currentRunLength, ref int[7] runHistory, int qrsize) {
965 	if (runHistory[0] == 0)
966 		currentRunLength += qrsize;  // Add white border to initial run
967 	memmove(&runHistory[1], &runHistory[0], 6 * (runHistory[0]).sizeof);
968 	runHistory[0] = currentRunLength;
969 }
970 
971 
972 
973 /*---- Basic QR Code information ----*/
974 
975 // Public function - see documentation comment in header file.
976 
977 /*
978  * Returns the side length of the given QR Code, assuming that encoding succeeded.
979  * The result is in the range [21, 177]. Note that the length of the array buffer
980  * is related to the side length - every 'uint8_t qrcode[]' must have length at least
981  * qrcodegen_BUFFER_LEN_FOR_VERSION(version), which equals ceil(size^2 / 8 + 1).
982  */
983 
984 int qrcodegen_getSize(const uint8_t* qrcode) {
985 	assert(qrcode != null);
986 	int result = qrcode[0];
987 	assert((qrcodegen_VERSION_MIN * 4 + 17) <= result
988 		&& result <= (qrcodegen_VERSION_MAX * 4 + 17));
989 	return result;
990 }
991 
992 
993 // Public function - see documentation comment in header file.
994 
995 /*
996  * Returns the color of the module (pixel) at the given coordinates, which is false
997  * for white or true for black. The top left corner has the coordinates (x=0, y=0).
998  * If the given coordinates are out of bounds, then false (white) is returned.
999  */
1000 
1001 bool qrcodegen_getModule(const uint8_t* qrcode, int x, int y) {
1002 	assert(qrcode != null);
1003 	int qrsize = qrcode[0];
1004 	return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModule(qrcode, x, y);
1005 }
1006 
1007 
1008 // Gets the module at the given coordinates, which must be in bounds.
1009 private bool getModule(const uint8_t* qrcode, int x, int y) {
1010 	int qrsize = qrcode[0];
1011 	assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize);
1012 	int index = y * qrsize + x;
1013 	return getBit(qrcode[(index >> 3) + 1], index & 7);
1014 }
1015 
1016 
1017 // Sets the module at the given coordinates, which must be in bounds.
1018 private void setModule(uint8_t* qrcode, int x, int y, bool isBlack) {
1019 	int qrsize = qrcode[0];
1020 	assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize);
1021 	int index = y * qrsize + x;
1022 	int bitIndex = index & 7;
1023 	int byteIndex = (index >> 3) + 1;
1024 	if (isBlack)
1025 		qrcode[byteIndex] |= 1 << bitIndex;
1026 	else
1027 		qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF;
1028 }
1029 
1030 
1031 // Sets the module at the given coordinates, doing nothing if out of bounds.
1032 private void setModuleBounded(uint8_t* qrcode, int x, int y, bool isBlack) {
1033 	int qrsize = qrcode[0];
1034 	if (0 <= x && x < qrsize && 0 <= y && y < qrsize)
1035 		setModule(qrcode, x, y, isBlack);
1036 }
1037 
1038 
1039 // Returns true iff the i'th bit of x is set to 1. Requires x >= 0 and 0 <= i <= 14.
1040 static bool getBit(int x, int i) {
1041 	return ((x >> i) & 1) != 0;
1042 }
1043 
1044 
1045 
1046 /*---- Segment handling ----*/
1047 
1048 // Public function - see documentation comment in header file.
1049 
1050 /*
1051  * Tests whether the given string can be encoded as a segment in alphanumeric mode.
1052  * A string is encodable iff each character is in the following set: 0 to 9, A to Z
1053  * (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
1054  */
1055 bool qrcodegen_isAlphanumeric(const(char)* text) {
1056 	assert(text != null);
1057 	for (; *text != '\0'; text++) {
1058 		if (strchr(ALPHANUMERIC_CHARSET, *text) == null)
1059 			return false;
1060 	}
1061 	return true;
1062 }
1063 
1064 
1065 // Public function - see documentation comment in header file.
1066 
1067 /*
1068  * Tests whether the given string can be encoded as a segment in numeric mode.
1069  * A string is encodable iff each character is in the range 0 to 9.
1070  */
1071 bool qrcodegen_isNumeric(const(char)* text) {
1072 	assert(text != null);
1073 	for (; *text != '\0'; text++) {
1074 		if (*text < '0' || *text > '9')
1075 			return false;
1076 	}
1077 	return true;
1078 }
1079 
1080 
1081 // Public function - see documentation comment in header file.
1082 
1083 /*
1084  * Returns the number of bytes (uint8_t) needed for the data buffer of a segment
1085  * containing the given number of characters using the given mode. Notes:
1086  * - Returns SIZE_MAX on failure, i.e. numChars > INT16_MAX or
1087  *   the number of needed bits exceeds INT16_MAX (i.e. 32767).
1088  * - Otherwise, all valid results are in the range [0, ceil(INT16_MAX / 8)], i.e. at most 4096.
1089  * - It is okay for the user to allocate more bytes for the buffer than needed.
1090  * - For byte mode, numChars measures the number of bytes, not Unicode code points.
1091  * - For ECI mode, numChars must be 0, and the worst-case number of bytes is returned.
1092  *   An actual ECI segment can have shorter data. For non-ECI modes, the result is exact.
1093  */
1094 
1095 size_t qrcodegen_calcSegmentBufferSize(qrcodegen_Mode mode, size_t numChars) {
1096 	int temp = calcSegmentBitLength(mode, numChars);
1097 	if (temp == -1)
1098 		return SIZE_MAX;
1099 	assert(0 <= temp && temp <= INT16_MAX);
1100 	return (cast(size_t)temp + 7) / 8;
1101 }
1102 
1103 
1104 // Returns the number of data bits needed to represent a segment
1105 // containing the given number of characters using the given mode. Notes:
1106 // - Returns -1 on failure, i.e. numChars > INT16_MAX or
1107 //   the number of needed bits exceeds INT16_MAX (i.e. 32767).
1108 // - Otherwise, all valid results are in the range [0, INT16_MAX].
1109 // - For byte mode, numChars measures the number of bytes, not Unicode code points.
1110 // - For ECI mode, numChars must be 0, and the worst-case number of bits is returned.
1111 //   An actual ECI segment can have shorter data. For non-ECI modes, the result is exact.
1112 private int calcSegmentBitLength(qrcodegen_Mode mode, size_t numChars) {
1113 	// All calculations are designed to avoid overflow on all platforms
1114 	if (numChars > cast(uint)INT16_MAX)
1115 		return -1;
1116 	c_long result = cast(c_long)numChars;
1117 	if (mode == qrcodegen_Mode_NUMERIC)
1118 		result = (result * 10 + 2) / 3;  // ceil(10/3 * n)
1119 	else if (mode == qrcodegen_Mode_ALPHANUMERIC)
1120 		result = (result * 11 + 1) / 2;  // ceil(11/2 * n)
1121 	else if (mode == qrcodegen_Mode_BYTE)
1122 		result *= 8;
1123 	else if (mode == qrcodegen_Mode_KANJI)
1124 		result *= 13;
1125 	else if (mode == qrcodegen_Mode_ECI && numChars == 0)
1126 		result = 3 * 8;
1127 	else {  // Invalid argument
1128 		assert(false);
1129 	}
1130 	assert(result >= 0);
1131 	if (result > INT16_MAX)
1132 		return -1;
1133 	return cast(int)result;
1134 }
1135 
1136 
1137 // Public function - see documentation comment in header file.
1138 
1139 /*
1140  * Returns a segment representing the given binary data encoded in
1141  * byte mode. All input byte arrays are acceptable. Any text string
1142  * can be converted to UTF-8 bytes and encoded as a byte mode segment.
1143  */
1144 
1145 qrcodegen_Segment qrcodegen_makeBytes(const uint8_t* data, size_t len, uint8_t* buf) {
1146 	assert(data != null || len == 0);
1147 	qrcodegen_Segment result;
1148 	result.mode = qrcodegen_Mode_BYTE;
1149 	result.bitLength = calcSegmentBitLength(result.mode, len);
1150 	assert(result.bitLength != -1);
1151 	result.numChars = cast(int)len;
1152 	if (len > 0)
1153 		memcpy(buf, data, len * (buf[0]).sizeof);
1154 	result.data = buf;
1155 	return result;
1156 }
1157 
1158 
1159 // Public function - see documentation comment in header file.
1160 
1161 /*
1162  * Returns a segment representing the given string of decimal digits encoded in numeric mode.
1163  */
1164 
1165 qrcodegen_Segment qrcodegen_makeNumeric(const(char)* digits, uint8_t* buf) {
1166 	assert(digits != null);
1167 	qrcodegen_Segment result;
1168 	size_t len = strlen(digits);
1169 	result.mode = qrcodegen_Mode_NUMERIC;
1170 	int bitLen = calcSegmentBitLength(result.mode, len);
1171 	assert(bitLen != -1);
1172 	result.numChars = cast(int)len;
1173 	if (bitLen > 0)
1174 		memset(buf, 0, (cast(size_t)bitLen + 7) / 8 * (buf[0]).sizeof);
1175 	result.bitLength = 0;
1176 
1177 	uint accumData = 0;
1178 	int accumCount = 0;
1179 	for (; *digits != '\0'; digits++) {
1180 		char c = *digits;
1181 		assert('0' <= c && c <= '9');
1182 		accumData = accumData * 10 + cast(uint)(c - '0');
1183 		accumCount++;
1184 		if (accumCount == 3) {
1185 			appendBitsToBuffer(accumData, 10, buf, &result.bitLength);
1186 			accumData = 0;
1187 			accumCount = 0;
1188 		}
1189 	}
1190 	if (accumCount > 0)  // 1 or 2 digits remaining
1191 		appendBitsToBuffer(accumData, accumCount * 3 + 1, buf, &result.bitLength);
1192 	assert(result.bitLength == bitLen);
1193 	result.data = buf;
1194 	return result;
1195 }
1196 
1197 
1198 // Public function - see documentation comment in header file.
1199 
1200 /*
1201  * Returns a segment representing the given text string encoded in alphanumeric mode.
1202  * The characters allowed are: 0 to 9, A to Z (uppercase only), space,
1203  * dollar, percent, asterisk, plus, hyphen, period, slash, colon.
1204  */
1205 
1206 qrcodegen_Segment qrcodegen_makeAlphanumeric(const(char)* text, uint8_t* buf) {
1207 	assert(text != null);
1208 	qrcodegen_Segment result;
1209 	size_t len = strlen(text);
1210 	result.mode = qrcodegen_Mode_ALPHANUMERIC;
1211 	int bitLen = calcSegmentBitLength(result.mode, len);
1212 	assert(bitLen != -1);
1213 	result.numChars = cast(int)len;
1214 	if (bitLen > 0)
1215 		memset(buf, 0, (cast(size_t)bitLen + 7) / 8 * (buf[0]).sizeof);
1216 	result.bitLength = 0;
1217 
1218 	uint accumData = 0;
1219 	int accumCount = 0;
1220 	for (; *text != '\0'; text++) {
1221 		const char *temp = strchr(ALPHANUMERIC_CHARSET, *text);
1222 		assert(temp != null);
1223 		accumData = accumData * 45 + cast(uint)(temp - ALPHANUMERIC_CHARSET);
1224 		accumCount++;
1225 		if (accumCount == 2) {
1226 			appendBitsToBuffer(accumData, 11, buf, &result.bitLength);
1227 			accumData = 0;
1228 			accumCount = 0;
1229 		}
1230 	}
1231 	if (accumCount > 0)  // 1 character remaining
1232 		appendBitsToBuffer(accumData, 6, buf, &result.bitLength);
1233 	assert(result.bitLength == bitLen);
1234 	result.data = buf;
1235 	return result;
1236 }
1237 
1238 
1239 // Public function - see documentation comment in header file.
1240 
1241 /*
1242  * Returns a segment representing an Extended Channel Interpretation
1243  * (ECI) designator with the given assignment value.
1244  */
1245 
1246 qrcodegen_Segment qrcodegen_makeEci(c_long assignVal, uint8_t* buf) {
1247 	qrcodegen_Segment result;
1248 	result.mode = qrcodegen_Mode_ECI;
1249 	result.numChars = 0;
1250 	result.bitLength = 0;
1251 	if (assignVal < 0)
1252 		assert(false);
1253 	else if (assignVal < (1 << 7)) {
1254 		memset(buf, 0, 1 * (buf[0]).sizeof);
1255 		appendBitsToBuffer(cast(uint)assignVal, 8, buf, &result.bitLength);
1256 	} else if (assignVal < (1 << 14)) {
1257 		memset(buf, 0, 2 * (buf[0]).sizeof);
1258 		appendBitsToBuffer(2, 2, buf, &result.bitLength);
1259 		appendBitsToBuffer(cast(uint)assignVal, 14, buf, &result.bitLength);
1260 	} else if (assignVal < 1000000L) {
1261 		memset(buf, 0, 3 * (buf[0]).sizeof);
1262 		appendBitsToBuffer(6, 3, buf, &result.bitLength);
1263 		appendBitsToBuffer(cast(uint)(assignVal >> 10), 11, buf, &result.bitLength);
1264 		appendBitsToBuffer(cast(uint)(assignVal & 0x3FF), 10, buf, &result.bitLength);
1265 	} else
1266 		assert(false);
1267 	result.data = buf;
1268 	return result;
1269 }
1270 
1271 
1272 // Calculates the number of bits needed to encode the given segments at the given version_.
1273 // Returns a non-negative number if successful. Otherwise returns -1 if a segment has too
1274 // many characters to fit its length field, or the total bits exceeds INT16_MAX.
1275 private int getTotalBits(const qrcodegen_Segment* segs, size_t len, int version_) {
1276 	assert(segs != null || len == 0);
1277 	long result = 0;
1278 	for (size_t i = 0; i < len; i++) {
1279 		int numChars  = segs[i].numChars;
1280 		int bitLength = segs[i].bitLength;
1281 		assert(0 <= numChars  && numChars  <= INT16_MAX);
1282 		assert(0 <= bitLength && bitLength <= INT16_MAX);
1283 		int ccbits = numCharCountBits(segs[i].mode, version_);
1284 		assert(0 <= ccbits && ccbits <= 16);
1285 		if (numChars >= (1L << ccbits))
1286 			return -1;  // The segment's length doesn't fit the field's bit width
1287 		result += 4L + ccbits + bitLength;
1288 		if (result > INT16_MAX)
1289 			return -1;  // The sum might overflow an int type
1290 	}
1291 	assert(0 <= result && result <= INT16_MAX);
1292 	return cast(int)result;
1293 }
1294 
1295 
1296 // Returns the bit width of the character count field for a segment in the given mode
1297 // in a QR Code at the given version_ number. The result is in the range [0, 16].
1298 static int numCharCountBits(qrcodegen_Mode mode, int version_) {
1299 	assert(qrcodegen_VERSION_MIN <= version_ && version_ <= qrcodegen_VERSION_MAX);
1300 	int i = (version_ + 7) / 17;
1301 	switch (mode) {
1302 		case qrcodegen_Mode_NUMERIC     : { static immutable int[] temp1 = [10, 12, 14]; return temp1[i]; }
1303 		case qrcodegen_Mode_ALPHANUMERIC: { static immutable int[] temp2 = [ 9, 11, 13]; return temp2[i]; }
1304 		case qrcodegen_Mode_BYTE        : { static immutable int[] temp3 = [ 8, 16, 16]; return temp3[i]; }
1305 		case qrcodegen_Mode_KANJI       : { static immutable int[] temp4 = [ 8, 10, 12]; return temp4[i]; }
1306 		case qrcodegen_Mode_ECI         : return 0;
1307 		default:  assert(false);  // Dummy value
1308 	}
1309 }
1310 
1311 /++
1312 
1313 +/
1314 struct QrCode {
1315 	ubyte[qrcodegen_BUFFER_LEN_MAX] qrcode;
1316 
1317 	this(string text) {
1318 		ubyte[qrcodegen_BUFFER_LEN_MAX] tempBuffer;
1319 		bool ok = qrcodegen_encodeText((text ~ "\0").ptr, tempBuffer.ptr, qrcode.ptr,
1320 			qrcodegen_Ecc_MEDIUM, qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, qrcodegen_Mask_AUTO, true);
1321 		if(!ok)
1322 			throw new Exception("qr code generation failed");
1323 	}
1324 
1325 	/++
1326 		The size of the square of the code. It is size x size.
1327 	+/
1328 	int size() {
1329 		return qrcodegen_getSize(qrcode.ptr);
1330 	}
1331 
1332 	/++
1333 		Returns true if it is a dark square, false if it is a light one.
1334 	+/
1335 	bool opIndex(int x, int y) {
1336 		return qrcodegen_getModule(qrcode.ptr, x, y);
1337 	}
1338 }
1339