1 /++
2 	This is a port of the C code from https://www.nayuki.io/page/qr-code-generator-library
3 
4 	History:
5 		Originally written in C by Project Nayuki.
6 
7 		Ported to D by me on July 26, 2021
8 +/
9 /*
10  * QR Code generator library (C)
11  *
12  * Copyright (c) Project Nayuki. (MIT License)
13  * https://www.nayuki.io/page/qr-code-generator-library
14  *
15  * Permission is hereby granted, free of charge, to any person obtaining a copy of
16  * this software and associated documentation files (the "Software"), to deal in
17  * the Software without restriction, including without limitation the rights to
18  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
19  * the Software, and to permit persons to whom the Software is furnished to do so,
20  * subject to the following conditions:
21  * - The above copyright notice and this permission notice shall be included in
22  *   all copies or substantial portions of the Software.
23  * - The Software is provided "as is", without warranty of any kind, express or
24  *   implied, including but not limited to the warranties of merchantability,
25  *   fitness for a particular purpose and noninfringement. In no event shall the
26  *   authors or copyright holders be liable for any claim, damages or other
27  *   liability, whether in an action of contract, tort or otherwise, arising from,
28  *   out of or in connection with the Software or the use or other dealings in the
29  *   Software.
30  */
31 module arsd.qrcode;
32 
33 ///
34 unittest {
35 	import arsd.qrcode;
36 
37 	void main() {
38 		import arsd.simpledisplay;
39 
40 		QrCode code = QrCode("http://arsdnet.net/");
41 
42 		enum drawsize = 4;
43 		// you have to have some border around it
44 		auto window = new SimpleWindow(code.size * drawsize + 80, code.size * drawsize + 80);
45 
46 		{
47 			auto painter = window.draw;
48 			painter.clear(Color.white);
49 
50 			foreach(y; 0 .. code.size)
51 			foreach(x; 0 .. code.size) {
52 				if(code[x, y]) {
53 					painter.outlineColor = Color.black;
54 					painter.fillColor = Color.black;
55 				} else {
56 					painter.outlineColor = Color.white;
57 					painter.fillColor = Color.white;
58 				}
59 				painter.drawRectangle(Point(x * drawsize + 40, y * drawsize + 40), Size(drawsize, drawsize));
60 			}
61 		}
62 
63 		window.eventLoop(0);
64 	}
65 
66 	main; // exclude from docs
67 }
68 
69 import core.stdc.stddef;
70 import core.stdc.stdint;
71 import core.stdc.string;
72 import core.stdc.config;
73 import core.stdc.stdlib;
74 import core.stdc.math;
75 
76 /*
77  * This library creates QR Code symbols, which is a type of two-dimension barcode.
78  * Invented by Denso Wave and described in the ISO/IEC 18004 standard.
79  * A QR Code structure is an immutable square grid of black and white cells.
80  * The library provides functions to create a QR Code from text or binary data.
81  * The library covers the QR Code Model 2 specification, supporting all versions (sizes)
82  * from 1 to 40, all 4 error correction levels, and 4 character encoding modes.
83  *
84  * Ways to create a QR Code object:
85  * - High level: Take the payload data and call qrcodegen_encodeText() or qrcodegen_encodeBinary().
86  * - Low level: Custom-make the list of segments and call
87  *   qrcodegen_encodeSegments() or qrcodegen_encodeSegmentsAdvanced().
88  * (Note that all ways require supplying the desired error correction level and various byte buffers.)
89  */
90 
91 
92 /*---- Enum and struct types----*/
93 
94 /*
95  * The error correction level in a QR Code symbol.
96  */
97 
98 alias qrcodegen_Ecc = int;
99 
100 enum /*qrcodegen_Ecc*/ {
101 	// Must be declared in ascending order of error protection
102 	// so that an internal qrcodegen function works properly
103 	qrcodegen_Ecc_LOW = 0 ,  // The QR Code can tolerate about  7% erroneous codewords
104 	qrcodegen_Ecc_MEDIUM  ,  // The QR Code can tolerate about 15% erroneous codewords
105 	qrcodegen_Ecc_QUARTILE,  // The QR Code can tolerate about 25% erroneous codewords
106 	qrcodegen_Ecc_HIGH    ,  // The QR Code can tolerate about 30% erroneous codewords
107 }
108 
109 
110 /*
111  * The mask pattern used in a QR Code symbol.
112  */
113 alias qrcodegen_Mask = int;
114 enum /* qrcodegen_Mask */ {
115 	// A special value to tell the QR Code encoder to
116 	// automatically select an appropriate mask pattern
117 	qrcodegen_Mask_AUTO = -1,
118 	// The eight actual mask patterns
119 	qrcodegen_Mask_0 = 0,
120 	qrcodegen_Mask_1,
121 	qrcodegen_Mask_2,
122 	qrcodegen_Mask_3,
123 	qrcodegen_Mask_4,
124 	qrcodegen_Mask_5,
125 	qrcodegen_Mask_6,
126 	qrcodegen_Mask_7,
127 }
128 
129 
130 /*
131  * Describes how a segment's data bits are interpreted.
132  */
133 alias qrcodegen_Mode = int;
134 enum /*qrcodegen_Mode*/ {
135 	qrcodegen_Mode_NUMERIC      = 0x1,
136 	qrcodegen_Mode_ALPHANUMERIC = 0x2,
137 	qrcodegen_Mode_BYTE         = 0x4,
138 	qrcodegen_Mode_KANJI        = 0x8,
139 	qrcodegen_Mode_ECI          = 0x7,
140 }
141 
142 
143 /*
144  * A segment of character/binary/control data in a QR Code symbol.
145  * The mid-level way to create a segment is to take the payload data
146  * and call a factory function such as qrcodegen_makeNumeric().
147  * The low-level way to create a segment is to custom-make the bit buffer
148  * and initialize a qrcodegen_Segment struct with appropriate values.
149  * Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
150  * Any segment longer than this is meaningless for the purpose of generating QR Codes.
151  * Moreover, the maximum allowed bit length is 32767 because
152  * the largest QR Code (version 40) has 31329 modules.
153  */
154 struct qrcodegen_Segment {
155 	// The mode indicator of this segment.
156 	qrcodegen_Mode mode;
157 
158 	// The length of this segment's unencoded data. Measured in characters for
159 	// numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
160 	// Always zero or positive. Not the same as the data's bit length.
161 	int numChars;
162 
163 	// The data bits of this segment, packed in bitwise big endian.
164 	// Can be null if the bit length is zero.
165 	uint8_t *data;
166 
167 	// The number of valid data bits used in the buffer. Requires
168 	// 0 <= bitLength <= 32767, and bitLength <= (capacity of data array) * 8.
169 	// The character count (numChars) must agree with the mode and the bit buffer length.
170 	int bitLength;
171 };
172 
173 
174 
175 /*---- Macro constants and functions ----*/
176 
177 enum qrcodegen_VERSION_MIN =   1;  // The minimum version number supported in the QR Code Model 2 standard
178 enum qrcodegen_VERSION_MAX =  40;  // The maximum version number supported in the QR Code Model 2 standard
179 
180 // Calculates the number of bytes needed to store any QR Code up to and including the given version number,
181 // as a compile-time constant. For example, 'uint8_t buffer[qrcodegen_BUFFER_LEN_FOR_VERSION(25)];'
182 // can store any single QR Code from version 1 to 25 (inclusive). The result fits in an int (or int16).
183 // Requires qrcodegen_VERSION_MIN <= n <= qrcodegen_VERSION_MAX.
184 auto qrcodegen_BUFFER_LEN_FOR_VERSION(int n) { return ((((n) * 4 + 17) * ((n) * 4 + 17) + 7) / 8 + 1); }
185 
186 // The worst-case number of bytes needed to store one QR Code, up to and including
187 // version 40. This value equals 3918, which is just under 4 kilobytes.
188 // Use this more convenient value to avoid calculating tighter memory bounds for buffers.
189 auto qrcodegen_BUFFER_LEN_MAX() { return qrcodegen_BUFFER_LEN_FOR_VERSION(qrcodegen_VERSION_MAX); }
190 
191 
192 
193 /*---- Functions (high level) to generate QR Codes ----*/
194 
195 /*
196  * Encodes the given text string to a QR Code, returning true if encoding succeeded.
197  * If the data is too long to fit in any version in the given range
198  * at the given ECC level, then false is returned.
199  * - The input text must be encoded in UTF-8 and contain no NULs.
200  * - The variables ecl and mask must correspond to enum constant values.
201  * - Requires 1 <= minVersion <= maxVersion <= 40.
202  * - The arrays tempBuffer and qrcode must each have a length
203  *   of at least qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion).
204  * - After the function returns, tempBuffer contains no useful data.
205  * - If successful, the resulting QR Code may use numeric,
206  *   alphanumeric, or byte mode to encode the text.
207  * - In the most optimistic case, a QR Code at version 40 with low ECC
208  *   can hold any UTF-8 string up to 2953 bytes, or any alphanumeric string
209  *   up to 4296 characters, or any digit string up to 7089 characters.
210  *   These numbers represent the hard upper limit of the QR Code standard.
211  * - Please consult the QR Code specification for information on
212  *   data capacities per version, ECC level, and text encoding mode.
213  */
214 bool qrcodegen_encodeText(const char *text, uint8_t* tempBuffer, uint8_t* qrcode,
215 	qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl);
216 
217 
218 /*
219  * Encodes the given binary data to a QR Code, returning true if encoding succeeded.
220  * If the data is too long to fit in any version in the given range
221  * at the given ECC level, then false is returned.
222  * - The input array range dataAndTemp[0 : dataLen] should normally be
223  *   valid UTF-8 text, but is not required by the QR Code standard.
224  * - The variables ecl and mask must correspond to enum constant values.
225  * - Requires 1 <= minVersion <= maxVersion <= 40.
226  * - The arrays dataAndTemp and qrcode must each have a length
227  *   of at least qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion).
228  * - After the function returns, the contents of dataAndTemp may have changed,
229  *   and does not represent useful data anymore.
230  * - If successful, the resulting QR Code will use byte mode to encode the data.
231  * - In the most optimistic case, a QR Code at version 40 with low ECC can hold any byte
232  *   sequence up to length 2953. This is the hard upper limit of the QR Code standard.
233  * - Please consult the QR Code specification for information on
234  *   data capacities per version, ECC level, and text encoding mode.
235  */
236 bool qrcodegen_encodeBinary(uint8_t* dataAndTemp, size_t dataLen, uint8_t* qrcode,
237 	qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl);
238 
239 
240 
241 /*---- Functions to extract raw data from QR Codes ----*/
242 
243 
244 /*
245  * QR Code generator library (C)
246  *
247  * Copyright (c) Project Nayuki. (MIT License)
248  * https://www.nayuki.io/page/qr-code-generator-library
249  *
250  * Permission is hereby granted, free of charge, to any person obtaining a copy of
251  * this software and associated documentation files (the "Software"), to deal in
252  * the Software without restriction, including without limitation the rights to
253  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
254  * the Software, and to permit persons to whom the Software is furnished to do so,
255  * subject to the following conditions:
256  * - The above copyright notice and this permission notice shall be included in
257  *   all copies or substantial portions of the Software.
258  * - The Software is provided "as is", without warranty of any kind, express or
259  *   implied, including but not limited to the warranties of merchantability,
260  *   fitness for a particular purpose and noninfringement. In no event shall the
261  *   authors or copyright holders be liable for any claim, damages or other
262  *   liability, whether in an action of contract, tort or otherwise, arising from,
263  *   out of or in connection with the Software or the use or other dealings in the
264  *   Software.
265  */
266 
267 /*---- Forward declarations for private functions ----*/
268 
269 // Regarding all public and private functions defined in this source file:
270 // - They require all pointer/array arguments to be not null unless the array length is zero.
271 // - They only read input scalar/array arguments, write to output pointer/array
272 //   arguments, and return scalar values; they are "pure" functions.
273 // - They don't read mutable global variables or write to any global variables.
274 // - They don't perform I/O, read the clock, print to console, etc.
275 // - They allocate a small and constant amount of stack memory.
276 // - They don't allocate or free any memory on the heap.
277 // - They don't recurse or mutually recurse. All the code
278 //   could be inlined into the top-level public functions.
279 // - They run in at most quadratic time with respect to input arguments.
280 //   Most functions run in linear time, and some in constant time.
281 //   There are no unbounded loops or non-obvious termination conditions.
282 // - They are completely thread-safe if the caller does not give the
283 //   same writable buffer to concurrent calls to these functions.
284 
285 /*---- Private tables of constants ----*/
286 
287 // The set of all legal characters in alphanumeric mode, where each character
288 // value maps to the index in the string. For checking text and encoding segments.
289 static const char *ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";
290 
291 // For generating error correction codes.
292 private const int8_t[41][4] ECC_CODEWORDS_PER_BLOCK = [
293 	// Version: (note that index 0 is for padding, and is set to an illegal value)
294 	//0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
295 	[-1,  7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],  // Low
296 	[-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28],  // Medium
297 	[-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],  // Quartile
298 	[-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],  // High
299 ];
300 
301 enum qrcodegen_REED_SOLOMON_DEGREE_MAX = 30;  // Based on the table above
302 
303 // For generating error correction codes.
304 private const int8_t[41][4] NUM_ERROR_CORRECTION_BLOCKS = [
305 	// Version: (note that index 0 is for padding, and is set to an illegal value)
306 	//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
307 	[-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4,  4,  4,  4,  4,  6,  6,  6,  6,  7,  8,  8,  9,  9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25],  // Low
308 	[-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5,  5,  8,  9,  9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49],  // Medium
309 	[-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8,  8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68],  // Quartile
310 	[-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81],  // High
311 ];
312 
313 // For automatic mask pattern selection.
314 static const int PENALTY_N1 =  3;
315 static const int PENALTY_N2 =  3;
316 static const int PENALTY_N3 = 40;
317 static const int PENALTY_N4 = 10;
318 
319 
320 
321 /*---- High-level QR Code encoding functions ----*/
322 
323 // Public function - see documentation comment in header file.
324 bool qrcodegen_encodeText(const char *text, uint8_t* tempBuffer, uint8_t* qrcode,
325 		qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl) {
326 
327 	size_t textLen = strlen(text);
328 	if (textLen == 0)
329 		return qrcodegen_encodeSegmentsAdvanced(null, 0, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode);
330 	size_t bufLen = qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion);
331 
332 	qrcodegen_Segment seg;
333 	if (qrcodegen_isNumeric(text)) {
334 		if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_NUMERIC, textLen) > bufLen)
335 			goto fail;
336 		seg = qrcodegen_makeNumeric(text, tempBuffer);
337 	} else if (qrcodegen_isAlphanumeric(text)) {
338 		if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_ALPHANUMERIC, textLen) > bufLen)
339 			goto fail;
340 		seg = qrcodegen_makeAlphanumeric(text, tempBuffer);
341 	} else {
342 		if (textLen > bufLen)
343 			goto fail;
344 		for (size_t i = 0; i < textLen; i++)
345 			tempBuffer[i] = cast(uint8_t)text[i];
346 		seg.mode = qrcodegen_Mode_BYTE;
347 		seg.bitLength = calcSegmentBitLength(seg.mode, textLen);
348 		if (seg.bitLength == -1)
349 			goto fail;
350 		seg.numChars = cast(int)textLen;
351 		seg.data = tempBuffer;
352 	}
353 	return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode);
354 
355 fail:
356 	qrcode[0] = 0;  // Set size to invalid value for safety
357 	return false;
358 }
359 
360 
361 // Public function - see documentation comment in header file.
362 bool qrcodegen_encodeBinary(uint8_t* dataAndTemp, size_t dataLen, uint8_t* qrcode,
363 		qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl) {
364 
365 	qrcodegen_Segment seg;
366 	seg.mode = qrcodegen_Mode_BYTE;
367 	seg.bitLength = calcSegmentBitLength(seg.mode, dataLen);
368 	if (seg.bitLength == -1) {
369 		qrcode[0] = 0;  // Set size to invalid value for safety
370 		return false;
371 	}
372 	seg.numChars = cast(int)dataLen;
373 	seg.data = dataAndTemp;
374 	return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, dataAndTemp, qrcode);
375 }
376 
377 
378 // Appends the given number of low-order bits of the given value to the given byte-based
379 // bit buffer, increasing the bit length. Requires 0 <= numBits <= 16 and val < 2^numBits.
380 private void appendBitsToBuffer(uint val, int numBits, uint8_t* buffer, int *bitLen) {
381 	assert(0 <= numBits && numBits <= 16 && cast(c_ulong)val >> numBits == 0);
382 	for (int i = numBits - 1; i >= 0; i--, (*bitLen)++)
383 		buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7));
384 }
385 
386 
387 
388 /*---- Low-level QR Code encoding functions ----*/
389 
390 // Public function - see documentation comment in header file.
391 
392 /*
393  * Renders a QR Code representing the given segments at the given error correction level.
394  * The smallest possible QR Code version is automatically chosen for the output. Returns true if
395  * QR Code creation succeeded, or false if the data is too long to fit in any version. The ECC level
396  * of the result may be higher than the ecl argument if it can be done without increasing the version.
397  * This function allows the user to create a custom sequence of segments that switches
398  * between modes (such as alphanumeric and byte) to encode text in less space.
399  * This is a low-level API; the high-level API is qrcodegen_encodeText() and qrcodegen_encodeBinary().
400  * To save memory, the segments' data buffers can alias/overlap tempBuffer, and will
401  * result in them being clobbered, but the QR Code output will still be correct.
402  * But the qrcode array must not overlap tempBuffer or any segment's data buffer.
403  */
404 
405 bool qrcodegen_encodeSegments(const qrcodegen_Segment* segs, size_t len,
406 		qrcodegen_Ecc ecl, uint8_t* tempBuffer, uint8_t* qrcode) {
407 	return qrcodegen_encodeSegmentsAdvanced(segs, len, ecl,
408 		qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, qrcodegen_Mask_AUTO, true, tempBuffer, qrcode);
409 }
410 
411 
412 // Public function - see documentation comment in header file.
413 
414 
415 /*
416  * Renders a QR Code representing the given segments with the given encoding parameters.
417  * Returns true if QR Code creation succeeded, or false if the data is too long to fit in the range of versions.
418  * The smallest possible QR Code version within the given range is automatically
419  * chosen for the output. Iff boostEcl is true, then the ECC level of the result
420  * may be higher than the ecl argument if it can be done without increasing the
421  * version. The mask is either between qrcodegen_Mask_0 to 7 to force that mask, or
422  * qrcodegen_Mask_AUTO to automatically choose an appropriate mask (which may be slow).
423  * This function allows the user to create a custom sequence of segments that switches
424  * between modes (such as alphanumeric and byte) to encode text in less space.
425  * This is a low-level API; the high-level API is qrcodegen_encodeText() and qrcodegen_encodeBinary().
426  * To save memory, the segments' data buffers can alias/overlap tempBuffer, and will
427  * result in them being clobbered, but the QR Code output will still be correct.
428  * But the qrcode array must not overlap tempBuffer or any segment's data buffer.
429  */
430 
431 bool qrcodegen_encodeSegmentsAdvanced(const qrcodegen_Segment* segs, size_t len, qrcodegen_Ecc ecl,
432 		int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl, uint8_t* tempBuffer, uint8_t* qrcode) {
433 	assert(segs != null || len == 0);
434 	assert(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX);
435 	assert(0 <= cast(int)ecl && cast(int)ecl <= 3 && -1 <= cast(int)mask && cast(int)mask <= 7);
436 
437 	// Find the minimal version_ number to use
438 	int version_, dataUsedBits;
439 	for (version_ = minVersion; ; version_++) {
440 		int dataCapacityBits = getNumDataCodewords(version_, ecl) * 8;  // Number of data bits available
441 		dataUsedBits = getTotalBits(segs, len, version_);
442 		if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits)
443 			break;  // This version_ number is found to be suitable
444 		if (version_ >= maxVersion) {  // All version_s in the range could not fit the given data
445 			qrcode[0] = 0;  // Set size to invalid value for safety
446 			return false;
447 		}
448 	}
449 	assert(dataUsedBits != -1);
450 
451 	// Increase the error correction level while the data still fits in the current version_ number
452 	for (int i = cast(int)qrcodegen_Ecc_MEDIUM; i <= cast(int)qrcodegen_Ecc_HIGH; i++) {  // From low to high
453 		if (boostEcl && dataUsedBits <= getNumDataCodewords(version_, cast(qrcodegen_Ecc)i) * 8)
454 			ecl = cast(qrcodegen_Ecc)i;
455 	}
456 
457 	// Concatenate all segments to create the data bit string
458 	memset(qrcode, 0, cast(size_t)qrcodegen_BUFFER_LEN_FOR_VERSION(version_) * (qrcode[0]).sizeof);
459 	int bitLen = 0;
460 	for (size_t i = 0; i < len; i++) {
461 		const qrcodegen_Segment *seg = &segs[i];
462 		appendBitsToBuffer(cast(uint)seg.mode, 4, qrcode, &bitLen);
463 		appendBitsToBuffer(cast(uint)seg.numChars, numCharCountBits(seg.mode, version_), qrcode, &bitLen);
464 		for (int j = 0; j < seg.bitLength; j++) {
465 			int bit = (seg.data[j >> 3] >> (7 - (j & 7))) & 1;
466 			appendBitsToBuffer(cast(uint)bit, 1, qrcode, &bitLen);
467 		}
468 	}
469 	assert(bitLen == dataUsedBits);
470 
471 	// Add terminator and pad up to a byte if applicable
472 	int dataCapacityBits = getNumDataCodewords(version_, ecl) * 8;
473 	assert(bitLen <= dataCapacityBits);
474 	int terminatorBits = dataCapacityBits - bitLen;
475 	if (terminatorBits > 4)
476 		terminatorBits = 4;
477 	appendBitsToBuffer(0, terminatorBits, qrcode, &bitLen);
478 	appendBitsToBuffer(0, (8 - bitLen % 8) % 8, qrcode, &bitLen);
479 	assert(bitLen % 8 == 0);
480 
481 	// Pad with alternating bytes until data capacity is reached
482 	for (uint8_t padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11)
483 		appendBitsToBuffer(padByte, 8, qrcode, &bitLen);
484 
485 	// Draw function and data codeword modules
486 	addEccAndInterleave(qrcode, version_, ecl, tempBuffer);
487 	initializeFunctionModules(version_, qrcode);
488 	drawCodewords(tempBuffer, getNumRawDataModules(version_) / 8, qrcode);
489 	drawWhiteFunctionModules(qrcode, version_);
490 	initializeFunctionModules(version_, tempBuffer);
491 
492 	// Handle masking
493 	if (mask == qrcodegen_Mask_AUTO) {  // Automatically choose best mask
494 		long minPenalty = long.max;
495 		for (int i = 0; i < 8; i++) {
496 			qrcodegen_Mask msk = cast(qrcodegen_Mask)i;
497 			applyMask(tempBuffer, qrcode, msk);
498 			drawFormatBits(ecl, msk, qrcode);
499 			long penalty = getPenaltyScore(qrcode);
500 			if (penalty < minPenalty) {
501 				mask = msk;
502 				minPenalty = penalty;
503 			}
504 			applyMask(tempBuffer, qrcode, msk);  // Undoes the mask due to XOR
505 		}
506 	}
507 	assert(0 <= cast(int)mask && cast(int)mask <= 7);
508 	applyMask(tempBuffer, qrcode, mask);
509 	drawFormatBits(ecl, mask, qrcode);
510 	return true;
511 }
512 
513 
514 
515 /*---- Error correction code generation functions ----*/
516 
517 // Appends error correction bytes to each block of the given data array, then interleaves
518 // bytes from the blocks and stores them in the result array. data[0 : dataLen] contains
519 // the input data. data[dataLen : rawCodewords] is used as a temporary work area and will
520 // be clobbered by this function. The final answer is stored in result[0 : rawCodewords].
521 private void addEccAndInterleave(uint8_t* data, int version_, qrcodegen_Ecc ecl, uint8_t* result) {
522 	// Calculate parameter numbers
523 	assert(0 <= cast(int)ecl && cast(int)ecl < 4 && qrcodegen_VERSION_MIN <= version_ && version_ <= qrcodegen_VERSION_MAX);
524 	int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[cast(int)ecl][version_];
525 	int blockEccLen = ECC_CODEWORDS_PER_BLOCK  [cast(int)ecl][version_];
526 	int rawCodewords = getNumRawDataModules(version_) / 8;
527 	int dataLen = getNumDataCodewords(version_, ecl);
528 	int numShortBlocks = numBlocks - rawCodewords % numBlocks;
529 	int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen;
530 
531 	// Split data into blocks, calculate ECC, and interleave
532 	// (not concatenate) the bytes into a single sequence
533 	uint8_t[qrcodegen_REED_SOLOMON_DEGREE_MAX] rsdiv;
534 	reedSolomonComputeDivisor(blockEccLen, rsdiv.ptr);
535 	const(uint8_t)* dat = data;
536 	for (int i = 0; i < numBlocks; i++) {
537 		int datLen = shortBlockDataLen + (i < numShortBlocks ? 0 : 1);
538 		uint8_t *ecc = &data[dataLen];  // Temporary storage
539 		reedSolomonComputeRemainder(dat, datLen, rsdiv.ptr, blockEccLen, ecc);
540 		for (int j = 0, k = i; j < datLen; j++, k += numBlocks) {  // Copy data
541 			if (j == shortBlockDataLen)
542 				k -= numShortBlocks;
543 			result[k] = dat[j];
544 		}
545 		for (int j = 0, k = dataLen + i; j < blockEccLen; j++, k += numBlocks)  // Copy ECC
546 			result[k] = ecc[j];
547 		dat += datLen;
548 	}
549 }
550 
551 
552 // Returns the number of 8-bit codewords that can be used for storing data (not ECC),
553 // for the given version_ number and error correction level. The result is in the range [9, 2956].
554 private int getNumDataCodewords(int version_, qrcodegen_Ecc ecl) {
555 	int v = version_, e = cast(int)ecl;
556 	assert(0 <= e && e < 4);
557 	return getNumRawDataModules(v) / 8
558 		- ECC_CODEWORDS_PER_BLOCK    [e][v]
559 		* NUM_ERROR_CORRECTION_BLOCKS[e][v];
560 }
561 
562 
563 // Returns the number of data bits that can be stored in a QR Code of the given version_ number, after
564 // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
565 // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
566 private int getNumRawDataModules(int ver) {
567 	assert(qrcodegen_VERSION_MIN <= ver && ver <= qrcodegen_VERSION_MAX);
568 	int result = (16 * ver + 128) * ver + 64;
569 	if (ver >= 2) {
570 		int numAlign = ver / 7 + 2;
571 		result -= (25 * numAlign - 10) * numAlign - 55;
572 		if (ver >= 7)
573 			result -= 36;
574 	}
575 	assert(208 <= result && result <= 29648);
576 	return result;
577 }
578 
579 
580 
581 /*---- Reed-Solomon ECC generator functions ----*/
582 
583 // Computes a Reed-Solomon ECC generator polynomial for the given degree, storing in result[0 : degree].
584 // This could be implemented as a lookup table over all possible parameter values, instead of as an algorithm.
585 private void reedSolomonComputeDivisor(int degree, uint8_t* result) {
586 	assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX);
587 	// Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1.
588 	// For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}.
589 	memset(result, 0, cast(size_t)degree * (result[0]).sizeof);
590 	result[degree - 1] = 1;  // Start off with the monomial x^0
591 
592 	// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
593 	// drop the highest monomial term which is always 1x^degree.
594 	// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
595 	uint8_t root = 1;
596 	for (int i = 0; i < degree; i++) {
597 		// Multiply the current product by (x - r^i)
598 		for (int j = 0; j < degree; j++) {
599 			result[j] = reedSolomonMultiply(result[j], root);
600 			if (j + 1 < degree)
601 				result[j] ^= result[j + 1];
602 		}
603 		root = reedSolomonMultiply(root, 0x02);
604 	}
605 }
606 
607 
608 // Computes the Reed-Solomon error correction codeword for the given data and divisor polynomials.
609 // The remainder when data[0 : dataLen] is divided by divisor[0 : degree] is stored in result[0 : degree].
610 // All polynomials are in big endian, and the generator has an implicit leading 1 term.
611 private void reedSolomonComputeRemainder(const uint8_t* data, int dataLen,
612 		const uint8_t* generator, int degree, uint8_t* result) {
613 	assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX);
614 	memset(result, 0, cast(size_t)degree * (result[0]).sizeof);
615 	for (int i = 0; i < dataLen; i++) {  // Polynomial division
616 		uint8_t factor = data[i] ^ result[0];
617 		memmove(&result[0], &result[1], cast(size_t)(degree - 1) * (result[0]).sizeof);
618 		result[degree - 1] = 0;
619 		for (int j = 0; j < degree; j++)
620 			result[j] ^= reedSolomonMultiply(generator[j], factor);
621 	}
622 }
623 
624 // Returns the product of the two given field elements modulo GF(2^8/0x11D).
625 // All inputs are valid. This could be implemented as a 256*256 lookup table.
626 private uint8_t reedSolomonMultiply(uint8_t x, uint8_t y) {
627 	// Russian peasant multiplication
628 	uint8_t z = 0;
629 	for (int i = 7; i >= 0; i--) {
630 		z = cast(uint8_t)((z << 1) ^ ((z >> 7) * 0x11D));
631 		z ^= ((y >> i) & 1) * x;
632 	}
633 	return z;
634 }
635 
636 
637 
638 /*---- Drawing function modules ----*/
639 
640 // Clears the given QR Code grid with white modules for the given
641 // version_'s size, then marks every function module as black.
642 private void initializeFunctionModules(int version_, uint8_t* qrcode) {
643 	// Initialize QR Code
644 	int qrsize = version_ * 4 + 17;
645 	memset(qrcode, 0, cast(size_t)((qrsize * qrsize + 7) / 8 + 1) * (qrcode[0]).sizeof);
646 	qrcode[0] = cast(uint8_t)qrsize;
647 
648 	// Fill horizontal and vertical timing patterns
649 	fillRectangle(6, 0, 1, qrsize, qrcode);
650 	fillRectangle(0, 6, qrsize, 1, qrcode);
651 
652 	// Fill 3 finder patterns (all corners except bottom right) and format bits
653 	fillRectangle(0, 0, 9, 9, qrcode);
654 	fillRectangle(qrsize - 8, 0, 8, 9, qrcode);
655 	fillRectangle(0, qrsize - 8, 9, 8, qrcode);
656 
657 	// Fill numerous alignment patterns
658 	uint8_t[7] alignPatPos;
659 	int numAlign = getAlignmentPatternPositions(version_, alignPatPos);
660 	for (int i = 0; i < numAlign; i++) {
661 		for (int j = 0; j < numAlign; j++) {
662 			// Don't draw on the three finder corners
663 			if (!((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)))
664 				fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode);
665 		}
666 	}
667 
668 	// Fill version_ blocks
669 	if (version_ >= 7) {
670 		fillRectangle(qrsize - 11, 0, 3, 6, qrcode);
671 		fillRectangle(0, qrsize - 11, 6, 3, qrcode);
672 	}
673 }
674 
675 
676 // Draws white function modules and possibly some black modules onto the given QR Code, without changing
677 // non-function modules. This does not draw the format bits. This requires all function modules to be previously
678 // marked black (namely by initializeFunctionModules()), because this may skip redrawing black function modules.
679 static void drawWhiteFunctionModules(uint8_t* qrcode, int version_) {
680 	// Draw horizontal and vertical timing patterns
681 	int qrsize = qrcodegen_getSize(qrcode);
682 	for (int i = 7; i < qrsize - 7; i += 2) {
683 		setModule(qrcode, 6, i, false);
684 		setModule(qrcode, i, 6, false);
685 	}
686 
687 	// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
688 	for (int dy = -4; dy <= 4; dy++) {
689 		for (int dx = -4; dx <= 4; dx++) {
690 			int dist = abs(dx);
691 			if (abs(dy) > dist)
692 				dist = abs(dy);
693 			if (dist == 2 || dist == 4) {
694 				setModuleBounded(qrcode, 3 + dx, 3 + dy, false);
695 				setModuleBounded(qrcode, qrsize - 4 + dx, 3 + dy, false);
696 				setModuleBounded(qrcode, 3 + dx, qrsize - 4 + dy, false);
697 			}
698 		}
699 	}
700 
701 	// Draw numerous alignment patterns
702 	uint8_t[7] alignPatPos;
703 	int numAlign = getAlignmentPatternPositions(version_, alignPatPos);
704 	for (int i = 0; i < numAlign; i++) {
705 		for (int j = 0; j < numAlign; j++) {
706 			if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0))
707 				continue;  // Don't draw on the three finder corners
708 			for (int dy = -1; dy <= 1; dy++) {
709 				for (int dx = -1; dx <= 1; dx++)
710 					setModule(qrcode, alignPatPos[i] + dx, alignPatPos[j] + dy, dx == 0 && dy == 0);
711 			}
712 		}
713 	}
714 
715 	// Draw version_ blocks
716 	if (version_ >= 7) {
717 		// Calculate error correction code and pack bits
718 		int rem = version_;  // version_ is uint6, in the range [7, 40]
719 		for (int i = 0; i < 12; i++)
720 			rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
721 		c_long bits = cast(c_long)version_ << 12 | rem;  // uint18
722 		assert(bits >> 18 == 0);
723 
724 		// Draw two copies
725 		for (int i = 0; i < 6; i++) {
726 			for (int j = 0; j < 3; j++) {
727 				int k = qrsize - 11 + j;
728 				setModule(qrcode, k, i, (bits & 1) != 0);
729 				setModule(qrcode, i, k, (bits & 1) != 0);
730 				bits >>= 1;
731 			}
732 		}
733 	}
734 }
735 
736 
737 // Draws two copies of the format bits (with its own error correction code) based
738 // on the given mask and error correction level. This always draws all modules of
739 // the format bits, unlike drawWhiteFunctionModules() which might skip black modules.
740 static void drawFormatBits(qrcodegen_Ecc ecl, qrcodegen_Mask mask, uint8_t* qrcode) {
741 	// Calculate error correction code and pack bits
742 	assert(0 <= cast(int)mask && cast(int)mask <= 7);
743 	static const int[] table = [1, 0, 3, 2];
744 	int data = table[cast(int)ecl] << 3 | cast(int)mask;  // errCorrLvl is uint2, mask is uint3
745 	int rem = data;
746 	for (int i = 0; i < 10; i++)
747 		rem = (rem << 1) ^ ((rem >> 9) * 0x537);
748 	int bits = (data << 10 | rem) ^ 0x5412;  // uint15
749 	assert(bits >> 15 == 0);
750 
751 	// Draw first copy
752 	for (int i = 0; i <= 5; i++)
753 		setModule(qrcode, 8, i, getBit(bits, i));
754 	setModule(qrcode, 8, 7, getBit(bits, 6));
755 	setModule(qrcode, 8, 8, getBit(bits, 7));
756 	setModule(qrcode, 7, 8, getBit(bits, 8));
757 	for (int i = 9; i < 15; i++)
758 		setModule(qrcode, 14 - i, 8, getBit(bits, i));
759 
760 	// Draw second copy
761 	int qrsize = qrcodegen_getSize(qrcode);
762 	for (int i = 0; i < 8; i++)
763 		setModule(qrcode, qrsize - 1 - i, 8, getBit(bits, i));
764 	for (int i = 8; i < 15; i++)
765 		setModule(qrcode, 8, qrsize - 15 + i, getBit(bits, i));
766 	setModule(qrcode, 8, qrsize - 8, true);  // Always black
767 }
768 
769 
770 // Calculates and stores an ascending list of positions of alignment patterns
771 // for this version_ number, returning the length of the list (in the range [0,7]).
772 // Each position is in the range [0,177), and are used on both the x and y axes.
773 // This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
774 private int getAlignmentPatternPositions(int version_, ref uint8_t[7] result) {
775 	if (version_ == 1)
776 		return 0;
777 	int numAlign = version_ / 7 + 2;
778 	int step = (version_ == 32) ? 26 :
779 		(version_*4 + numAlign*2 + 1) / (numAlign*2 - 2) * 2;
780 	for (int i = numAlign - 1, pos = version_ * 4 + 10; i >= 1; i--, pos -= step)
781 		result[i] = cast(uint8_t)pos;
782 	result[0] = 6;
783 	return numAlign;
784 }
785 
786 
787 // Sets every pixel in the range [left : left + width] * [top : top + height] to black.
788 static void fillRectangle(int left, int top, int width, int height, uint8_t* qrcode) {
789 	for (int dy = 0; dy < height; dy++) {
790 		for (int dx = 0; dx < width; dx++)
791 			setModule(qrcode, left + dx, top + dy, true);
792 	}
793 }
794 
795 
796 
797 /*---- Drawing data modules and masking ----*/
798 
799 // Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of
800 // the QR Code to be black at function modules and white at codeword modules (including unused remainder bits).
801 static void drawCodewords(const uint8_t* data, int dataLen, uint8_t* qrcode) {
802 	int qrsize = qrcodegen_getSize(qrcode);
803 	int i = 0;  // Bit index into the data
804 	// Do the funny zigzag scan
805 	for (int right = qrsize - 1; right >= 1; right -= 2) {  // Index of right column in each column pair
806 		if (right == 6)
807 			right = 5;
808 		for (int vert = 0; vert < qrsize; vert++) {  // Vertical counter
809 			for (int j = 0; j < 2; j++) {
810 				int x = right - j;  // Actual x coordinate
811 				bool upward = ((right + 1) & 2) == 0;
812 				int y = upward ? qrsize - 1 - vert : vert;  // Actual y coordinate
813 				if (!getModule(qrcode, x, y) && i < dataLen * 8) {
814 					bool black = getBit(data[i >> 3], 7 - (i & 7));
815 					setModule(qrcode, x, y, black);
816 					i++;
817 				}
818 				// If this QR Code has any remainder bits (0 to 7), they were assigned as
819 				// 0/false/white by the constructor and are left unchanged by this method
820 			}
821 		}
822 	}
823 	assert(i == dataLen * 8);
824 }
825 
826 
827 // XORs the codeword modules in this QR Code with the given mask pattern.
828 // The function modules must be marked and the codeword bits must be drawn
829 // before masking. Due to the arithmetic of XOR, calling applyMask() with
830 // the same mask value a second time will undo the mask. A final well-formed
831 // QR Code needs exactly one (not zero, two, etc.) mask applied.
832 static void applyMask(const uint8_t* functionModules, uint8_t* qrcode, qrcodegen_Mask mask) {
833 	assert(0 <= cast(int)mask && cast(int)mask <= 7);  // Disallows qrcodegen_Mask_AUTO
834 	int qrsize = qrcodegen_getSize(qrcode);
835 	for (int y = 0; y < qrsize; y++) {
836 		for (int x = 0; x < qrsize; x++) {
837 			if (getModule(functionModules, x, y))
838 				continue;
839 			bool invert;
840 			switch (cast(int)mask) {
841 				case 0:  invert = (x + y) % 2 == 0;                    break;
842 				case 1:  invert = y % 2 == 0;                          break;
843 				case 2:  invert = x % 3 == 0;                          break;
844 				case 3:  invert = (x + y) % 3 == 0;                    break;
845 				case 4:  invert = (x / 3 + y / 2) % 2 == 0;            break;
846 				case 5:  invert = x * y % 2 + x * y % 3 == 0;          break;
847 				case 6:  invert = (x * y % 2 + x * y % 3) % 2 == 0;    break;
848 				case 7:  invert = ((x + y) % 2 + x * y % 3) % 2 == 0;  break;
849 				default:  assert(false);
850 			}
851 			bool val = getModule(qrcode, x, y);
852 			setModule(qrcode, x, y, val ^ invert);
853 		}
854 	}
855 }
856 
857 
858 // Calculates and returns the penalty score based on state of the given QR Code's current modules.
859 // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
860 static long getPenaltyScore(const uint8_t* qrcode) {
861 	int qrsize = qrcodegen_getSize(qrcode);
862 	long result = 0;
863 
864 	// Adjacent modules in row having same color, and finder-like patterns
865 	for (int y = 0; y < qrsize; y++) {
866 		bool runColor = false;
867 		int runX = 0;
868 		int[7] runHistory = 0;
869 		for (int x = 0; x < qrsize; x++) {
870 			if (getModule(qrcode, x, y) == runColor) {
871 				runX++;
872 				if (runX == 5)
873 					result += PENALTY_N1;
874 				else if (runX > 5)
875 					result++;
876 			} else {
877 				finderPenaltyAddHistory(runX, runHistory, qrsize);
878 				if (!runColor)
879 					result += finderPenaltyCountPatterns(runHistory, qrsize) * PENALTY_N3;
880 				runColor = getModule(qrcode, x, y);
881 				runX = 1;
882 			}
883 		}
884 		result += finderPenaltyTerminateAndCount(runColor, runX, runHistory, qrsize) * PENALTY_N3;
885 	}
886 	// Adjacent modules in column having same color, and finder-like patterns
887 	for (int x = 0; x < qrsize; x++) {
888 		bool runColor = false;
889 		int runY = 0;
890 		int[7] runHistory = 0;
891 		for (int y = 0; y < qrsize; y++) {
892 			if (getModule(qrcode, x, y) == runColor) {
893 				runY++;
894 				if (runY == 5)
895 					result += PENALTY_N1;
896 				else if (runY > 5)
897 					result++;
898 			} else {
899 				finderPenaltyAddHistory(runY, runHistory, qrsize);
900 				if (!runColor)
901 					result += finderPenaltyCountPatterns(runHistory, qrsize) * PENALTY_N3;
902 				runColor = getModule(qrcode, x, y);
903 				runY = 1;
904 			}
905 		}
906 		result += finderPenaltyTerminateAndCount(runColor, runY, runHistory, qrsize) * PENALTY_N3;
907 	}
908 
909 	// 2*2 blocks of modules having same color
910 	for (int y = 0; y < qrsize - 1; y++) {
911 		for (int x = 0; x < qrsize - 1; x++) {
912 			bool  color = getModule(qrcode, x, y);
913 			if (  color == getModule(qrcode, x + 1, y) &&
914 			      color == getModule(qrcode, x, y + 1) &&
915 			      color == getModule(qrcode, x + 1, y + 1))
916 				result += PENALTY_N2;
917 		}
918 	}
919 
920 	// Balance of black and white modules
921 	int black = 0;
922 	for (int y = 0; y < qrsize; y++) {
923 		for (int x = 0; x < qrsize; x++) {
924 			if (getModule(qrcode, x, y))
925 				black++;
926 		}
927 	}
928 	int total = qrsize * qrsize;  // Note that size is odd, so black/total != 1/2
929 	// Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)%
930 	int k = cast(int)((labs(black * 20 - total * 10) + total - 1) / total) - 1;
931 	result += k * PENALTY_N4;
932 	return result;
933 }
934 
935 
936 // Can only be called immediately after a white run is added, and
937 // returns either 0, 1, or 2. A helper function for getPenaltyScore().
938 static int finderPenaltyCountPatterns(const int[7] runHistory, int qrsize) {
939 	int n = runHistory[1];
940 	assert(n <= qrsize * 3);
941 	bool core = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n;
942 	// The maximum QR Code size is 177, hence the black run length n <= 177.
943 	// Arithmetic is promoted to int, so n*4 will not overflow.
944 	return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0)
945 	     + (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0);
946 }
947 
948 
949 // Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore().
950 static int finderPenaltyTerminateAndCount(bool currentRunColor, int currentRunLength, ref int[7] runHistory, int qrsize) {
951 	if (currentRunColor) {  // Terminate black run
952 		finderPenaltyAddHistory(currentRunLength, runHistory, qrsize);
953 		currentRunLength = 0;
954 	}
955 	currentRunLength += qrsize;  // Add white border to final run
956 	finderPenaltyAddHistory(currentRunLength, runHistory, qrsize);
957 	return finderPenaltyCountPatterns(runHistory, qrsize);
958 }
959 
960 
961 // Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore().
962 static void finderPenaltyAddHistory(int currentRunLength, ref int[7] runHistory, int qrsize) {
963 	if (runHistory[0] == 0)
964 		currentRunLength += qrsize;  // Add white border to initial run
965 	memmove(&runHistory[1], &runHistory[0], 6 * (runHistory[0]).sizeof);
966 	runHistory[0] = currentRunLength;
967 }
968 
969 
970 
971 /*---- Basic QR Code information ----*/
972 
973 // Public function - see documentation comment in header file.
974 
975 /*
976  * Returns the side length of the given QR Code, assuming that encoding succeeded.
977  * The result is in the range [21, 177]. Note that the length of the array buffer
978  * is related to the side length - every 'uint8_t qrcode[]' must have length at least
979  * qrcodegen_BUFFER_LEN_FOR_VERSION(version), which equals ceil(size^2 / 8 + 1).
980  */
981 
982 int qrcodegen_getSize(const uint8_t* qrcode) {
983 	assert(qrcode != null);
984 	int result = qrcode[0];
985 	assert((qrcodegen_VERSION_MIN * 4 + 17) <= result
986 		&& result <= (qrcodegen_VERSION_MAX * 4 + 17));
987 	return result;
988 }
989 
990 
991 // Public function - see documentation comment in header file.
992 
993 /*
994  * Returns the color of the module (pixel) at the given coordinates, which is false
995  * for white or true for black. The top left corner has the coordinates (x=0, y=0).
996  * If the given coordinates are out of bounds, then false (white) is returned.
997  */
998 
999 bool qrcodegen_getModule(const uint8_t* qrcode, int x, int y) {
1000 	assert(qrcode != null);
1001 	int qrsize = qrcode[0];
1002 	return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModule(qrcode, x, y);
1003 }
1004 
1005 
1006 // Gets the module at the given coordinates, which must be in bounds.
1007 private bool getModule(const uint8_t* qrcode, int x, int y) {
1008 	int qrsize = qrcode[0];
1009 	assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize);
1010 	int index = y * qrsize + x;
1011 	return getBit(qrcode[(index >> 3) + 1], index & 7);
1012 }
1013 
1014 
1015 // Sets the module at the given coordinates, which must be in bounds.
1016 private void setModule(uint8_t* qrcode, int x, int y, bool isBlack) {
1017 	int qrsize = qrcode[0];
1018 	assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize);
1019 	int index = y * qrsize + x;
1020 	int bitIndex = index & 7;
1021 	int byteIndex = (index >> 3) + 1;
1022 	if (isBlack)
1023 		qrcode[byteIndex] |= 1 << bitIndex;
1024 	else
1025 		qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF;
1026 }
1027 
1028 
1029 // Sets the module at the given coordinates, doing nothing if out of bounds.
1030 private void setModuleBounded(uint8_t* qrcode, int x, int y, bool isBlack) {
1031 	int qrsize = qrcode[0];
1032 	if (0 <= x && x < qrsize && 0 <= y && y < qrsize)
1033 		setModule(qrcode, x, y, isBlack);
1034 }
1035 
1036 
1037 // Returns true iff the i'th bit of x is set to 1. Requires x >= 0 and 0 <= i <= 14.
1038 static bool getBit(int x, int i) {
1039 	return ((x >> i) & 1) != 0;
1040 }
1041 
1042 
1043 
1044 /*---- Segment handling ----*/
1045 
1046 // Public function - see documentation comment in header file.
1047 
1048 /*
1049  * Tests whether the given string can be encoded as a segment in alphanumeric mode.
1050  * A string is encodable iff each character is in the following set: 0 to 9, A to Z
1051  * (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
1052  */
1053 bool qrcodegen_isAlphanumeric(const(char)* text) {
1054 	assert(text != null);
1055 	for (; *text != '\0'; text++) {
1056 		if (strchr(ALPHANUMERIC_CHARSET, *text) == null)
1057 			return false;
1058 	}
1059 	return true;
1060 }
1061 
1062 
1063 // Public function - see documentation comment in header file.
1064 
1065 /*
1066  * Tests whether the given string can be encoded as a segment in numeric mode.
1067  * A string is encodable iff each character is in the range 0 to 9.
1068  */
1069 bool qrcodegen_isNumeric(const(char)* text) {
1070 	assert(text != null);
1071 	for (; *text != '\0'; text++) {
1072 		if (*text < '0' || *text > '9')
1073 			return false;
1074 	}
1075 	return true;
1076 }
1077 
1078 
1079 // Public function - see documentation comment in header file.
1080 
1081 /*
1082  * Returns the number of bytes (uint8_t) needed for the data buffer of a segment
1083  * containing the given number of characters using the given mode. Notes:
1084  * - Returns SIZE_MAX on failure, i.e. numChars > INT16_MAX or
1085  *   the number of needed bits exceeds INT16_MAX (i.e. 32767).
1086  * - Otherwise, all valid results are in the range [0, ceil(INT16_MAX / 8)], i.e. at most 4096.
1087  * - It is okay for the user to allocate more bytes for the buffer than needed.
1088  * - For byte mode, numChars measures the number of bytes, not Unicode code points.
1089  * - For ECI mode, numChars must be 0, and the worst-case number of bytes is returned.
1090  *   An actual ECI segment can have shorter data. For non-ECI modes, the result is exact.
1091  */
1092 
1093 size_t qrcodegen_calcSegmentBufferSize(qrcodegen_Mode mode, size_t numChars) {
1094 	int temp = calcSegmentBitLength(mode, numChars);
1095 	if (temp == -1)
1096 		return SIZE_MAX;
1097 	assert(0 <= temp && temp <= INT16_MAX);
1098 	return (cast(size_t)temp + 7) / 8;
1099 }
1100 
1101 
1102 // Returns the number of data bits needed to represent a segment
1103 // containing the given number of characters using the given mode. Notes:
1104 // - Returns -1 on failure, i.e. numChars > INT16_MAX or
1105 //   the number of needed bits exceeds INT16_MAX (i.e. 32767).
1106 // - Otherwise, all valid results are in the range [0, INT16_MAX].
1107 // - For byte mode, numChars measures the number of bytes, not Unicode code points.
1108 // - For ECI mode, numChars must be 0, and the worst-case number of bits is returned.
1109 //   An actual ECI segment can have shorter data. For non-ECI modes, the result is exact.
1110 private int calcSegmentBitLength(qrcodegen_Mode mode, size_t numChars) {
1111 	// All calculations are designed to avoid overflow on all platforms
1112 	if (numChars > cast(uint)INT16_MAX)
1113 		return -1;
1114 	c_long result = cast(c_long)numChars;
1115 	if (mode == qrcodegen_Mode_NUMERIC)
1116 		result = (result * 10 + 2) / 3;  // ceil(10/3 * n)
1117 	else if (mode == qrcodegen_Mode_ALPHANUMERIC)
1118 		result = (result * 11 + 1) / 2;  // ceil(11/2 * n)
1119 	else if (mode == qrcodegen_Mode_BYTE)
1120 		result *= 8;
1121 	else if (mode == qrcodegen_Mode_KANJI)
1122 		result *= 13;
1123 	else if (mode == qrcodegen_Mode_ECI && numChars == 0)
1124 		result = 3 * 8;
1125 	else {  // Invalid argument
1126 		assert(false);
1127 	}
1128 	assert(result >= 0);
1129 	if (result > INT16_MAX)
1130 		return -1;
1131 	return cast(int)result;
1132 }
1133 
1134 
1135 // Public function - see documentation comment in header file.
1136 
1137 /*
1138  * Returns a segment representing the given binary data encoded in
1139  * byte mode. All input byte arrays are acceptable. Any text string
1140  * can be converted to UTF-8 bytes and encoded as a byte mode segment.
1141  */
1142 
1143 qrcodegen_Segment qrcodegen_makeBytes(const uint8_t* data, size_t len, uint8_t* buf) {
1144 	assert(data != null || len == 0);
1145 	qrcodegen_Segment result;
1146 	result.mode = qrcodegen_Mode_BYTE;
1147 	result.bitLength = calcSegmentBitLength(result.mode, len);
1148 	assert(result.bitLength != -1);
1149 	result.numChars = cast(int)len;
1150 	if (len > 0)
1151 		memcpy(buf, data, len * (buf[0]).sizeof);
1152 	result.data = buf;
1153 	return result;
1154 }
1155 
1156 
1157 // Public function - see documentation comment in header file.
1158 
1159 /*
1160  * Returns a segment representing the given string of decimal digits encoded in numeric mode.
1161  */
1162 
1163 qrcodegen_Segment qrcodegen_makeNumeric(const(char)* digits, uint8_t* buf) {
1164 	assert(digits != null);
1165 	qrcodegen_Segment result;
1166 	size_t len = strlen(digits);
1167 	result.mode = qrcodegen_Mode_NUMERIC;
1168 	int bitLen = calcSegmentBitLength(result.mode, len);
1169 	assert(bitLen != -1);
1170 	result.numChars = cast(int)len;
1171 	if (bitLen > 0)
1172 		memset(buf, 0, (cast(size_t)bitLen + 7) / 8 * (buf[0]).sizeof);
1173 	result.bitLength = 0;
1174 
1175 	uint accumData = 0;
1176 	int accumCount = 0;
1177 	for (; *digits != '\0'; digits++) {
1178 		char c = *digits;
1179 		assert('0' <= c && c <= '9');
1180 		accumData = accumData * 10 + cast(uint)(c - '0');
1181 		accumCount++;
1182 		if (accumCount == 3) {
1183 			appendBitsToBuffer(accumData, 10, buf, &result.bitLength);
1184 			accumData = 0;
1185 			accumCount = 0;
1186 		}
1187 	}
1188 	if (accumCount > 0)  // 1 or 2 digits remaining
1189 		appendBitsToBuffer(accumData, accumCount * 3 + 1, buf, &result.bitLength);
1190 	assert(result.bitLength == bitLen);
1191 	result.data = buf;
1192 	return result;
1193 }
1194 
1195 
1196 // Public function - see documentation comment in header file.
1197 
1198 /*
1199  * Returns a segment representing the given text string encoded in alphanumeric mode.
1200  * The characters allowed are: 0 to 9, A to Z (uppercase only), space,
1201  * dollar, percent, asterisk, plus, hyphen, period, slash, colon.
1202  */
1203 
1204 qrcodegen_Segment qrcodegen_makeAlphanumeric(const(char)* text, uint8_t* buf) {
1205 	assert(text != null);
1206 	qrcodegen_Segment result;
1207 	size_t len = strlen(text);
1208 	result.mode = qrcodegen_Mode_ALPHANUMERIC;
1209 	int bitLen = calcSegmentBitLength(result.mode, len);
1210 	assert(bitLen != -1);
1211 	result.numChars = cast(int)len;
1212 	if (bitLen > 0)
1213 		memset(buf, 0, (cast(size_t)bitLen + 7) / 8 * (buf[0]).sizeof);
1214 	result.bitLength = 0;
1215 
1216 	uint accumData = 0;
1217 	int accumCount = 0;
1218 	for (; *text != '\0'; text++) {
1219 		const char *temp = strchr(ALPHANUMERIC_CHARSET, *text);
1220 		assert(temp != null);
1221 		accumData = accumData * 45 + cast(uint)(temp - ALPHANUMERIC_CHARSET);
1222 		accumCount++;
1223 		if (accumCount == 2) {
1224 			appendBitsToBuffer(accumData, 11, buf, &result.bitLength);
1225 			accumData = 0;
1226 			accumCount = 0;
1227 		}
1228 	}
1229 	if (accumCount > 0)  // 1 character remaining
1230 		appendBitsToBuffer(accumData, 6, buf, &result.bitLength);
1231 	assert(result.bitLength == bitLen);
1232 	result.data = buf;
1233 	return result;
1234 }
1235 
1236 
1237 // Public function - see documentation comment in header file.
1238 
1239 /*
1240  * Returns a segment representing an Extended Channel Interpretation
1241  * (ECI) designator with the given assignment value.
1242  */
1243 
1244 qrcodegen_Segment qrcodegen_makeEci(c_long assignVal, uint8_t* buf) {
1245 	qrcodegen_Segment result;
1246 	result.mode = qrcodegen_Mode_ECI;
1247 	result.numChars = 0;
1248 	result.bitLength = 0;
1249 	if (assignVal < 0)
1250 		assert(false);
1251 	else if (assignVal < (1 << 7)) {
1252 		memset(buf, 0, 1 * (buf[0]).sizeof);
1253 		appendBitsToBuffer(cast(uint)assignVal, 8, buf, &result.bitLength);
1254 	} else if (assignVal < (1 << 14)) {
1255 		memset(buf, 0, 2 * (buf[0]).sizeof);
1256 		appendBitsToBuffer(2, 2, buf, &result.bitLength);
1257 		appendBitsToBuffer(cast(uint)assignVal, 14, buf, &result.bitLength);
1258 	} else if (assignVal < 1000000L) {
1259 		memset(buf, 0, 3 * (buf[0]).sizeof);
1260 		appendBitsToBuffer(6, 3, buf, &result.bitLength);
1261 		appendBitsToBuffer(cast(uint)(assignVal >> 10), 11, buf, &result.bitLength);
1262 		appendBitsToBuffer(cast(uint)(assignVal & 0x3FF), 10, buf, &result.bitLength);
1263 	} else
1264 		assert(false);
1265 	result.data = buf;
1266 	return result;
1267 }
1268 
1269 
1270 // Calculates the number of bits needed to encode the given segments at the given version_.
1271 // Returns a non-negative number if successful. Otherwise returns -1 if a segment has too
1272 // many characters to fit its length field, or the total bits exceeds INT16_MAX.
1273 private int getTotalBits(const qrcodegen_Segment* segs, size_t len, int version_) {
1274 	assert(segs != null || len == 0);
1275 	long result = 0;
1276 	for (size_t i = 0; i < len; i++) {
1277 		int numChars  = segs[i].numChars;
1278 		int bitLength = segs[i].bitLength;
1279 		assert(0 <= numChars  && numChars  <= INT16_MAX);
1280 		assert(0 <= bitLength && bitLength <= INT16_MAX);
1281 		int ccbits = numCharCountBits(segs[i].mode, version_);
1282 		assert(0 <= ccbits && ccbits <= 16);
1283 		if (numChars >= (1L << ccbits))
1284 			return -1;  // The segment's length doesn't fit the field's bit width
1285 		result += 4L + ccbits + bitLength;
1286 		if (result > INT16_MAX)
1287 			return -1;  // The sum might overflow an int type
1288 	}
1289 	assert(0 <= result && result <= INT16_MAX);
1290 	return cast(int)result;
1291 }
1292 
1293 
1294 // Returns the bit width of the character count field for a segment in the given mode
1295 // in a QR Code at the given version_ number. The result is in the range [0, 16].
1296 static int numCharCountBits(qrcodegen_Mode mode, int version_) {
1297 	assert(qrcodegen_VERSION_MIN <= version_ && version_ <= qrcodegen_VERSION_MAX);
1298 	int i = (version_ + 7) / 17;
1299 	switch (mode) {
1300 		case qrcodegen_Mode_NUMERIC     : { static immutable int[] temp1 = [10, 12, 14]; return temp1[i]; }
1301 		case qrcodegen_Mode_ALPHANUMERIC: { static immutable int[] temp2 = [ 9, 11, 13]; return temp2[i]; }
1302 		case qrcodegen_Mode_BYTE        : { static immutable int[] temp3 = [ 8, 16, 16]; return temp3[i]; }
1303 		case qrcodegen_Mode_KANJI       : { static immutable int[] temp4 = [ 8, 10, 12]; return temp4[i]; }
1304 		case qrcodegen_Mode_ECI         : return 0;
1305 		default:  assert(false);  // Dummy value
1306 	}
1307 }
1308 
1309 /++
1310 
1311 +/
1312 struct QrCode {
1313 	ubyte[qrcodegen_BUFFER_LEN_MAX] qrcode;
1314 
1315 	this(string text) {
1316 		ubyte[qrcodegen_BUFFER_LEN_MAX] tempBuffer;
1317 		bool ok = qrcodegen_encodeText((text ~ "\0").ptr, tempBuffer.ptr, qrcode.ptr,
1318 			qrcodegen_Ecc_MEDIUM, qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, qrcodegen_Mask_AUTO, true);
1319 		if(!ok)
1320 			throw new Exception("qr code generation failed");
1321 	}
1322 
1323 	/++
1324 		The size of the square of the code. It is size x size.
1325 	+/
1326 	int size() {
1327 		return qrcodegen_getSize(qrcode.ptr);
1328 	}
1329 
1330 	/++
1331 		Returns true if it is a dark square, false if it is a light one.
1332 	+/
1333 	bool opIndex(int x, int y) {
1334 		return qrcodegen_getModule(qrcode.ptr, x, y);
1335 	}
1336 }
1337